ÌâÄ¿ÄÚÈÝ
1£®Ä³ÊÐÈÈÏßÍøÕ¾¾Í¡°ÃñÖÚÊÇ·ñÖ§³Ö¼Ó´óÐÞ½¨³ÇÊеØÏÂÅÅË®ÉèÊ©µÄ×ʽðͶÈ롱½øÐÐͶƱ£¬°´ÕÕ¸ÃÊб©ÓêÇ°ºóÁ½¸öʱ¼ä¸÷ÊÕ¼¯ÁË50·ÝÓÐЧͶƱ£¬ËùµÃͳ¼Æ½á¹ûÈç±íÖ§³Ö | ²»Ö§³Ö | ×Ü¼Æ | |
±©Óêºó | x | y | 50 |
±©ÓêÇ° | 20 | 30 | 50 |
×Ü¼Æ | A | B | 100 |
£¨¢ñ£©ÇóÁÐÁª±íÖеÄÊý¾Ýx£¬y£¬A£¬B¶îÖµ£»²¢»æÖÆÌõÐÎͼ£¬Í¨¹ýͼÐÎÅжϱ¾´Î±©ÓêÊÇ·ñÓ°Ïìµ½¸ÃÊÐÃñÖÚ¶Ô¼Ó´óÐÞ½¨³ÇÊеØÏÂÅÅË®ÉèÊ©µÄͶÈëµÄ̬¶È£¿
£¨¢ò£©Äܹ»Óжà´ó°ÑÎÕÈÏΪ±©ÓêÓë¸ÃÊÐÃñÖÚÊÇ·ñÔ޳ɼӴóÐÞ½¨³ÇÊеØÏÂÅÅË®ÉèÊ©µÄͶÈëÓйأ¿
£¨¢ó£©ÓÃÑù±¾¹À¼Æ×ÜÌ壬ÔÚ¸ÃÊÐÈ«ÌåÊÐÃñÖÐÈÎÒâÑ¡È¡4ÈË£¬ÆäÖС°Ö§³Ö¼Ó´óÐÞ½¨³ÇÊеØÏÂÅÅË®ÉèÊ©µÄ×ʽðͶÈ롱µÄÈËÊý¼ÇΪ¦Î£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®¸½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨a+c£©£¨c+d£©£¨b+d£©}$
P£¨K2¡Ük0£© | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
·ÖÎö £¨¢ñ£©ÀûÓù¤×÷ÈËÔ±´ÓËùÓÐͶƱÖÐÈÎÈ¡Ò»¸ö£¬È¡µ½¡°²»Ö§³ÖͶÈ롱µÄͶƱµÄ¸ÅÂÊΪ$\frac{2}{5}$£¬Çó³öy£¬¼´¿ÉÇóµÃÆäËüÖµ£»
£¨¢ò£©¸ù¾Ý¹«Ê½¼ÆËãÏà¹ØÖ¸Êýx2µÄ¹Û²âÖµ£¬±È½ÏÁÙ½çÖµµÄ´óС£¬¿ÉÅжÏÄϲý±©Óê¶ÔÃñÖÚÊÇ·ñÔ޳ɼӴó¶ÔÐÞ½¨³ÇÊеØÏÂÅÅË®ÉèÊ©µÄͶÈëÓйØϵ£®
£¨¢ó£©¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬4£¬Çó³öÏàÓ¦µÄ¸ÅÂÊ£¬¼´¿ÉÇó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
½â´ð ½â£º£¨¢ñ£©Éè¡°´ÓËùÓÐͶƱÖÐÈÎÈ¡Ò»¸ö£¬È¡µ½¡°²»Ö§³ÖͶÈ롱µÄͶƱ¡±ÎªÊ¼þA£¬
ÓÉÒÑÖªµÃP£¨A£©=$\frac{y+30}{100}$=$\frac{2}{5}$£¬
ËùÒÔy=10£¬B=40£¬x=40£¬A=60£¬
±©ÓêºóÖ§³ÖÂÊΪ$\frac{40}{50}$=$\frac{4}{5}$£¬²»Ö§³ÖÂÊΪ1-$\frac{4}{5}$=$\frac{1}{5}$£¬±©ÓêÇ°Ö§³ÖÂÊΪ$\frac{20}{50}$=$\frac{2}{5}$£¬²»Ö§³ÖÂÊΪ1-$\frac{2}{5}$=$\frac{3}{5}$£»
»æÖÆÌõÐÎͼ£¬
ͨ¹ýͼÐÎÅжϱ¾´Î±©ÓêÓ°Ïìµ½¸ÃÊÐÃñÖÚ¶Ô¼Ó´óÐÞ½¨³ÇÊеØÏÂÅÅË®ÉèÊ©µÄͶÈëµÄ̬¶È£»
£¨¢ò£©K2=$\frac{100¡Á£¨30¡Á40-20¡Á10£©^{2}}{50¡Á50¡Á40¡Á60}$¡Ö16.67£¾6.635£¬
¹ÊÖÁÉÙÓÐ99%µÄ°ÑÎÕÈÏΪÄϲý±©Óê¶ÔÃñÖÚÊÇ·ñÔ޳ɼӴó¶ÔÐÞ½¨³ÇÊеØÏÂÅÅË®ÉèÊ©µÄͶÈëÓйأ®
£¨¢ó£©¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬4£¬ÓÃÑù±¾¹À¼Æ×ÜÌ壬ÈÎÈ¡Ò»ÈËÖ§³ÖµÄ¸ÅÂÊΪP=$\frac{60}{100}$=$\frac{3}{5}$£¬
ËùÒԦΡ«B£¨4£¬$\frac{3}{5}$£©£¬P£¨¦Î=k£©=${C}_{4}^{k}•£¨\frac{2}{5}£©^{k}•£¨\frac{3}{5}£©^{4-k}$
ËùÒԦεķֲ¼ÁÐΪ
¦Î | 0 | 1 | 2 | 3 | 4 |
P | $\frac{16}{625}$ | $\frac{96}{625}$ | $\frac{216}{625}$ | $\frac{216}{625}$ | $\frac{81}{625}$ |
µãÆÀ ±¾Ì⿼²éÁËÁÐÁª±í¼°ÀûÓÃÁÐÁª±í½øÐжÀÁ¢ÐÔ¼ìÑéµÄ˼Ïë·½·¨£¬¿¼²é·Ö²¼ÁкÍÊýѧÆÚÍû£¬ÊìÁ·ÕÆÎÕ¶ÀÁ¢ÐÔ¼ìÑéµÄ˼Ïë·½·¨¡¢ÕýÈ·Çó¸ÅÂÊÊǽâÌâµÄ¹Ø¼ü£®
A£® | -$\frac{{\sqrt{3}}}{2}$ | B£® | -$\frac{1}{2}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{{\sqrt{3}}}{2}$ |
A£® | 240 | B£® | 144 | C£® | 48 | D£® | 168 |
A£® | $\frac{3}{4}$¡Á$£¨\frac{2}{3}£©^{n}$ | B£® | 2¡Á$£¨\frac{1}{3}£©^{n}$ | C£® | 2¡Á$£¨\frac{1}{3}£©^{n-1}$ | D£® | $\frac{2}{81}$¡Á3n-1 |
A£® | y=sin£¨4x-$\frac{2¦Ð}{5}$£© | B£® | y=sin£¨4x-$\frac{¦Ð}{5}$£© | C£® | y=sin£¨x-$\frac{2¦Ð}{5}$£© | D£® | y=sin£¨x-$\frac{¦Ð}{5}$£© |