题目内容
2.曲线y=2ex在点(0,2)处的切线方程为2x-y+2=0.分析 根据曲线方程求出切点,对f(x)进行求导,求出f′(x)在x=0处的值即为切线的斜率,利用点斜式求出切线方程.
解答 解:∵曲线y=2ex,
∴y′=2ex,
∴切线的斜率为k=y′|x=0=2,
当x=0时,y=2,切线过点(0,2),
∴曲线y=2ex在x=0处的切线方程是:y-2=2(x-0)
即2x-y+2=0,
故答案为:2x-y+2=0.
点评 此题主要考查导数研究曲线上某点的切线方程,要求切线方程,首先求出切线的斜率,利用了导数与斜率的关系,此题是一道基础题.
练习册系列答案
相关题目
12.$\frac{{sin{{47}°}-sin{{17}°}cos{{30}°}}}{{sin{{73}°}}}$的值是( )
A. | -$\frac{{\sqrt{3}}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
13.在正项等比数列{an}中,a3=$\frac{2}{9}$,S3=$\frac{26}{9}$,则数列{an}的通项公式为( )
A. | $\frac{3}{4}$×$(\frac{2}{3})^{n}$ | B. | 2×$(\frac{1}{3})^{n}$ | C. | 2×$(\frac{1}{3})^{n-1}$ | D. | $\frac{2}{81}$×3n-1 |
17.已知函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=$\frac{{2}^{-x}-a}{3}$,则f(4)等于( )
A. | $\frac{16}{3}$ | B. | 5 | C. | -$\frac{16}{3}$ | D. | -5 |
7.若log23=a,则log49=( )
A. | $\sqrt{a}$ | B. | a | C. | 2a | D. | a2 |
11.先将函数y=sin2x的图象向右平移$\frac{π}{5}$个长度单位,然后将所得图象横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变,此时函数的解析式为( )
A. | y=sin(4x-$\frac{2π}{5}$) | B. | y=sin(4x-$\frac{π}{5}$) | C. | y=sin(x-$\frac{2π}{5}$) | D. | y=sin(x-$\frac{π}{5}$) |
12.设数列{an}满足a1=1,an+1=3an+2,则{an}的通项公式为( )
A. | an=2•3n-1 | B. | an=2•3n-1-1 | C. | an=2•3n-1+1 | D. | an=2•3n+1-1 |