题目内容
【题目】已知分别是双曲线E: 的左、右焦点,P是双曲线上一点, 到左顶点的距离等于它到渐近线距离的2倍,(1)求双曲线的渐近线方程;(2)当时, 的面积为,求此双曲线的方程。
【答案】(1)(2)
【解析】试题分析:(1)由到左顶点的距离等于它到渐近线距离的倍,根据点到直线距离公式可得,从而可得双曲线的渐近线方程;(2)由余弦定理,结合双曲线的定义可得,再根据的面积为,可得,得,从而可得结果.
试题解析:(1)因为双曲线的渐近线方程为,则点到渐近线距离为(其中c是双曲线的半焦距),所以由题意知,又因为,解得,故所求双曲线的渐近线方程是.
(2)因为,由余弦定理得,即。又由双曲线的定义得,平方得,相减得。
根据三角形的面积公式得,得。再由上小题结论得,故所求双曲线方程是.
练习册系列答案
相关题目