题目内容

【题目】已知分别是双曲线E 的左、右焦点,P是双曲线上一点, 到左顶点的距离等于它到渐近线距离的2倍,(1)求双曲线的渐近线方程;(2)当时, 的面积为,求此双曲线的方程。

【答案】(1)(2)

【解析】试题分析:(1)到左顶点的距离等于它到渐近线距离的倍,根据点到直线距离公式可得,从而可得双曲线的渐近线方程;(2)由余弦定理,结合双曲线的定义可得再根据的面积为可得,得从而可得结果.

试题解析:(1)因为双曲线的渐近线方程为,则点到渐近线距离为(其中c是双曲线的半焦距),所以由题意知,又因为,解得,故所求双曲线的渐近线方程是.

(2)因为,由余弦定理得,即。又由双曲线的定义得,平方得,相减得

根据三角形的面积公式得,得。再由上小题结论得,故所求双曲线方程是.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网