题目内容
【题目】已知A={x|(2x)2﹣62x+8≤0},函数f(x)=log2x(x∈A).
(1)求函数f(x)的定义域;
(2)若函数h(x)=[f(x)]2﹣log2(2x),求函数h(x)的值域.
【答案】
(1)解:设t=2x,
∵A={x|(2x)2﹣62x+8≤0},
∴t2﹣6t+8≤0,解得2≤t≤4,
∴x∈[1,2],即函数f(x)的定义域为[1,2]
(2)解:设u=log2x,由(1)u=log2x∈[0,1],
∴ ,
∴h(x)∈[ ]
【解析】(1)设t=2x , 把(2x)2﹣62x+8≤0转化为关于t的一元二次不等式求得t的范围,进一步求得x的范围得答案;(2)设u=log2x,由(1)u=log2x∈[0,1],然后利用配方法求得函数的值域.
【考点精析】通过灵活运用函数的定义域及其求法和函数的值域,掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零;求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的即可以解答此题.
【题目】某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成小块地,在总共小块地中,随机选小块地种植品种甲,另外小块地种植品种乙.
(1)假设,求第一大块地都种植品种甲的概率;
(2)试验时每大块地分成小块,即,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm2)如下表:
甲 | ||||||||
乙 |
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?