题目内容

9.若(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC,那么△ABC是(  )
A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形

分析 对(a+b+c)(b+c-a)=3bc化简整理得b2-bc+c2=a2,代入余弦定理中求得cosA,进而求得A=60°,又由sinA=2sinBcosC,则$\frac{sinA}{sinB}$=2cosC,即$\frac{a}{b}$=2•$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,化简可得b=c,结合A=60°,进而可判断三角形的形状.

解答 解:∵(a+b+c)(b+c-a)=3bc
∴[(b+c)+a][(b+c)-a]=3bc
∴(b+c)2-a2=3bc,
b2-bc+c2=a2
根据余弦定理有a2=b2+c2-2bccosA,
∴b2-bc+c2=a2=b2+c2-2bccosA
即bc=2bccosA
即cosA=$\frac{1}{2}$,
∴A=60°
又由sinA=2sinBcosC,
则$\frac{sinA}{sinB}$=2cosC,即$\frac{a}{b}$=2•$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,
化简可得,b2=c2
即b=c,
∴△ABC是等边三角形.
故选B.

点评 本题主要考查了余弦定理在解三角形中的应用.要熟练记忆余弦定理的公式及其变形公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网