题目内容
【题目】已知函数f(x)=ax+ (其中a,b为常数)的图象经过(1,2),(2, )两点.
(1)求函数f(x)的解析式;
(2)判断f(x)的奇偶性.
【答案】
(1)解:由已知有 ,
解得 ,
则f(x)=x+
(2)解:由题意f(x)的定义域为{x|x≠0},关于原点对称,
又f(﹣x)=﹣x﹣ =﹣(x+ )=﹣f(x),
∴f(x)是奇函数
【解析】(1)由条件可得a,b的方程组,解方程即可得到a,b,进而得到解析式;(2)运用奇偶性的定义,首先确定定义域是否关于原点对称,再计算f(﹣x),与f(x)比较,即可得到奇偶性.
【考点精析】解答此题的关键在于理解函数的奇偶性的相关知识,掌握偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
练习册系列答案
相关题目
【题目】某产品的广告费用x与销售额y的统计数据如下表
广告费用x(万元) | 4 | 2 | 3 | 5 |
销售额y(万元) | 49 | 26 | 39 | 54 |
根据上表可得回归方程 = x+ 的 为9.4,据此模型预报广告费用为6万元时销售额为( )
A.63.6万元
B.65.5万元
C.67.7万元
D.72.0万元