题目内容

【题目】已知△ABC的三个顶点分别为A(2,3),B(1,﹣2),C(﹣3,4),求
(1)BC边上的中线AD所在的直线方程;
(2)△ABC的面积.

【答案】解:(1)设D(x,y),则x==﹣2,y==1,
∴D(﹣2,1),而A(2,3),
∴KAD==
∴BC边上的中线AD所在的直线方程为:
y﹣1=(x+2),即:x﹣2y+4=0;
(2)|BC|==2,直线BC的方程是:3x+y+5=0,
A到BC的距离d==
∴S△ABC=|BC|d=×2×=14.

【解析】(1)求出中点D的坐标,用两点式求出中线AD所在直线的方程,并化为一般式.
(2)求出线段BC的长度,求出直线BC的方程和点A到直线BC的距离,即可求得△ABC的面积.
【考点精析】认真审题,首先需要了解一般式方程(直线的一般式方程:关于的二元一次方程(A,B不同时为0)).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网