题目内容
【题目】已知△ABC的三个顶点分别为A(2,3),B(1,﹣2),C(﹣3,4),求
(1)BC边上的中线AD所在的直线方程;
(2)△ABC的面积.
【答案】解:(1)设D(x,y),则x==﹣2,y==1,
∴D(﹣2,1),而A(2,3),
∴KAD==,
∴BC边上的中线AD所在的直线方程为:
y﹣1=(x+2),即:x﹣2y+4=0;
(2)|BC|==2,直线BC的方程是:3x+y+5=0,
A到BC的距离d==,
∴S△ABC=|BC|d=×2×=14.
【解析】(1)求出中点D的坐标,用两点式求出中线AD所在直线的方程,并化为一般式.
(2)求出线段BC的长度,求出直线BC的方程和点A到直线BC的距离,即可求得△ABC的面积.
【考点精析】认真审题,首先需要了解一般式方程(直线的一般式方程:关于的二元一次方程(A,B不同时为0)).
练习册系列答案
相关题目
【题目】某校高三年级共有学生195人,其中女生105人,男生90人.现采用按性别分层抽样的方法,从中抽取13人进行问卷调查.设其中某项问题的选择分别为“同意”、“不同意”两种,且每人都做了一种选择.下面表格中提供了被调查人答卷情况的部分信息.
同意 | 不同意 | 合计 | |
女学生 | 4 | ||
男学生 | 2 |
(Ⅰ)完成上述统计表;
(Ⅱ)根据上表的数据估计高三年级学生该项问题选择“同意”的人数;
(Ⅲ) 从被抽取的女生中随机选取2人进行访谈,求选取的2名女生中至少有一人选择“同意”的概率.