题目内容
【题目】如图,在平面直角坐标系xOy中,椭圆C:(a>b>0)的左、右焦点分别为F1,F2,P为椭圆上一点(在x轴上方),连结PF1并延长交椭圆于另一点Q,设=λ.
(1)若点P的坐标为(1,),且△PQF2的周长为8,求椭圆C的方程;
(2)若PF2垂直于x轴,且椭圆C的离心率e∈[,],求实数λ的取值范围.
【答案】(1)+=1;(2)[,5]
【解析】
试题分析:(1)求椭圆标准方程,实质就是要求的值,为此要找两个关于的方程,本题由已知,把点坐标代入可得一个方程,由椭圆定义知的周长是,又可得值,从而得解;(2)本小题关键是建立起与离心率的关系,利用两点在椭圆上,由轴可求得,由=λ,可求得点坐标,把点坐标代入椭圆方程,再转化后可得的关系(λ2+4λ+3)e2=λ2-1,因为λ+1≠0,故有λ=,从而可得的范围.
试题解析:(1)因为F1,F2为椭圆C的两焦点,且P,Q为椭圆上的点,
所以PF1+PF2=QF1+QF2=2a,从而△PQF2的周长为4a.
由题意,得4a=8,解得a=2.
因为点P的坐标为(1,),所以,
解得b2=3.
所以椭圆C的方程为.
(2)方法一:因为PF2⊥x轴,且P在x轴上方,故设P(c,y0),y0>0.设Q(x1,y1).
因为P在椭圆上,所以,解得y0=,即P(c,).
因为F1(-c,0),所以=(-2c,-),=(x1+c,y1).
由=λ,得-2c=λ(x1+c),-=λy1,
解得x1=,y1=-,所以Q(-c,-).
因为点Q在椭圆上,所以()2e2+=1,
即(λ+2)2e2+(1-e2)=λ2,(λ2+4λ+3)e2=λ2-1,
因为λ+1≠0,
所以(λ+3)e2=λ-1,从而λ=.
因为e∈[,],所以≤e2≤,即≤λ≤5.
所以λ的取值范围为[,5].
方法二:因为PF2⊥x轴,且P在x轴上方,故设P(c,y0),y0>0.
因为P在椭圆上,所以,解得y0=,即P(c,).
因为F1(-c,0),故直线PF1的方程为.
由得(4c2+b2)x2+2b2cx+c2(b2-4a2)=0.
因为直线PF1与椭圆有一个交点为P(c,).设Q(x1,y1),
则x1+c,即-c-x1=.
因为,
所以λ==.
因为e∈[,],所以≤e2≤,即≤λ≤5.
所以λ的取值范围为[,5].
【题目】随着网络时代的进步,流量成为手机的附带品,人们可以利用手机随时随地的浏览网页,聊天,看视频,因此,社会上产生了很多低头族.某研究人员对该地区18∽50岁的5000名居民在月流量的使用情况上做出调查,所得结果统计如下图所示:
(Ⅰ)以频率估计概率,若在该地区任取3位居民,其中恰有位居民的月流量的使用情况
在300M∽400M之间,求的期望;
(Ⅱ)求被抽查的居民使用流量的平均值;
(Ⅲ)经过数据分析,在一定的范围内,流量套餐的打折情况与其日销售份数成线性相关
关系,该研究人员将流量套餐的打折情况与其日销售份数的结果统计如下表所示:
折扣 | 1折 | 2折 | 3折 | 4折 | 5折 |
销售份数 | 50 | 85 | 115 | 140 | 160 |
试建立关于的的回归方程.
附注:回归方程中斜率和截距的最小二乘估计公式分别为:
,