题目内容
【题目】某学校举行知识竞赛,第一轮选拔共设有A、B、C、D四个问题,规则如下:
①每位参加者记分器的初始分均为10分,答对问题A、B、C、D分别加1分、2分、3分、6分,答错任一题减2分;
②每回答一题,记分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;
③每位参加者按问题A、B、C、D顺序作答,直至答题结束.
假设甲同学对问题A、B、C、D回答正确的概率依次为、、、,且各题回答正确与否相互之间没有影响.
(1)求甲同学能进入下一轮的概率;
(2)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列和数学期望Εξ.
【答案】(1);(2) 分布列见解析,期望为
【解析】
(1)根据题意,列举甲能进入下一轮的五种情况,由于每题答题结果相互独立,根据相互对立事件和互斥事件的概率公式,得到结果;
(2)哟图一可知答对一个题或答错一个题都不能决定你甲的去留,所以最少答两个题,随机变量可能的取值为,由于每题的答题结构都是相对独立的,根据相互对立事件同时发生的概率得到结果.
设分别是第一、二、三、四个问题,用表示甲同学第个问题回答正确,用表示第个问题回答错误,则是对立事件,
由题意得,,
则,
(1)记“甲同学能进入下一轮”为事件Q,
则
.
(2)由题意,可知随机变量可能的取值,
由于每题答题结果都是相对对立的,
因为,
,
2 | 3 | 4 | |
|
|
所以.
【题目】从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) | ||||
频数(个) | 5 | 10 | 20 | 15 |
(1) 根据频数分布表计算苹果的重量在的频率;
(2) 用分层抽样的方法从重量在和的苹果中共抽取4个,其中重量在的有几个?
(3) 在(2)中抽出的4个苹果中,任取2个,求重量在和中各有1个的概率.
【题目】某市为了了解民众对开展创建文明城市工作以来的满意度,随机调查了40名群众,并将他们随机分成,两组,每组20人,组群众给第一阶段的创文工作评分,组群众给第二阶段的创文工作评分,根据两组群众的评分绘制了如图所示的茎叶图.
(Ⅰ)根据茎叶图比较群众对两个阶段的创文工作满意度评分的平均值和集中程度(不要求计算出具体值,给出结论即可);
(Ⅱ)完成下面的列联表,并通过计算判断是否有的把握认为民众对两个阶段创文工作的满意度存在差异?
低于70分 | 不低于70分 | 合计 | |
第一阶段 | |||
第二阶段 | |||
合计 |
参考公式:,.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |