题目内容
(14分)设函数是定义域为R上的奇函数。(1)求的值.(2)若上的最小值为—2,求m的值。
(1)k=1(2)
解析
(本小题满分12分)设函数(1)求函数的单调区间、极值;(2)若当时,恒有,试确定的取值范围。
(本题12分)设函数的定义域为A, 函数(其中)的定义域为B. (1) 求集合A和B; (2) 设全集,当a=0时,求;(3) 若, 求实数的取值范围.
(本小题满分13分)已知函数(1)当时,求曲线处的切线方程;(2)设的两个极值点,的一个零点,且证明:存在实数按照某种顺序排列后构成等差数列,并求.
(本题满分12分)设函数且对任意非零实数恒有,且对任意. (Ⅰ)求及的值; (Ⅱ)判断函数的奇偶性;(Ⅲ)求方程的解.
(本小题满分12分)已知且,定义在区间内的函数是奇函数.(1)求函数的解析式及的取值范围;(2)讨论的单调性;
(14分)已知函数.(1)求这个函数的图象在点处的切线方程;(2)讨论这个函数的单调区间.
为了研究某种药物,用小白鼠进行试验,发现药物在血液内的浓度与时间的关系因使用方式的不同而不同。若使用注射方式给药,则在注射后的3小时内,药物在白鼠血液内的浓度与时间t满足关系式:,若使用口服方式给药,则药物在白鼠血液内的浓度与时间t满足关系式:现对小白鼠同时进行注射和口服该种药物,且注射药物和口服药物的吸收与代谢互不干扰。(1)若a=1,求3小时内,该小白鼠何时血液中药物的浓度最高,并求出最大值?(2)若使小白鼠在用药后3小时内血液中的药物浓度不低于4,求正数a的取值范围。
(本题满分12分)已知为上的偶函数,且当≥0时,,则(1)在R上的解析式为;(2)写出的单调区间.