题目内容
为了解某校学生参加某项测试的情况,从该校学生中随机抽取了6位同学,这6位同学的成绩(分数)如茎叶图所示.
⑴求这6位同学成绩的平均数和标准差;
⑵从这6位同学中随机选出两位同学来分析成绩的分布情况,设为这两位同学中成绩低于平均分的人数,求的分布列和期望.
⑴这6位同学的成绩平均数为81;标准差为7;
⑵的分布列为
的数学期望为.0 1 2 P
解析试题分析:⑴代入平均数及标准差的公式即得;⑵由(1)可得平均分为81,所以低于平均分的有4人,现从中抽取2人,随机变量可能的取值为0,1,2.这是一个超几何分布,由超几何分布的概率公式即可得其分布列及期望.
试题解析:⑴这6位同学的成绩平均数为.
又.
故这6位问学成绩的标准差为s=7 .6分
⑵随机变量可能的取值为0,1,2,则
.
故的分布列为0 1 2 P
即的数学期望 12分
考点:1、平均数与标准差;2、随机变量的分布列及期望;3、超几何分布.
练习册系列答案
相关题目
空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,解代表空气污染越严重:
PM2.5日均浓度 | 0~35 | 35~75 | 75~115 | 115~150 | 150~250 | >250 |
空气质量级别 | 一级 | 二级 | 三级 | 四级 | 五级 | 六级 |
空气质量类别 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
某市2013年3月8日—4月7日(30天)对空气质量指数PM2.5进行检测,获得数据后整理得到如下条形图:
(1)估计该城市一个月内空气质量类别为良的概率;
(2)从空气质量级别为三级和四级的数据中任取2个,求至少有一天空气质量类别为中度污染的概率.
为了对新产品进行合理定价,对该产品进行了试销试验,以观察需求量Y(单位:千件)对于价格x(单位:千元)的反应,得数据如下:
x/千元 | 50 | 70 | 80 | 40 | 30 | 90 | 95 | 97 |
y/千件 | 100 | 80 | 60 | 120 | 135 | 55 | 50 | 48 |
(2)若成本x=y+500,试求:
①在盈亏平衡条件下(利润为零)的价格;
②在利润为最大的条件下,定价为多少?
想象一下一个人从出生到死亡,在每个生日都测量身高,并作出这些数据的散点图,这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析,下表是一位母亲给儿子做的成长记录:
年龄/周岁 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
身高/cm | 91.8 | 97.6 | 104.2 | 110.9 | 115.6 | 122.0 | 128.5 |
| |||||||
年龄/周岁 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
身高/cm | 134.2 | 140.8 | 147.6 | 154.2 | 160.9 | 167.5 | 173.0 |
(2)如果年龄相差5岁,则身高有多大差异(3~16岁之间)?
(3)如果身高相差20 cm,其年龄相差多少(3~16岁之间)?
(4)计算残差,说明该函数模型是否能够较好地反映年龄与身高的关系,说明理由.
下表是对某市8所中学学生是否吸烟进行调查所得的结果:
| 吸烟学生 | 不吸烟学生 |
父母中至少有一人吸烟 | 816 | 3 203 |
父母均不吸烟 | 188 | 1 168 |
(2)在父母均不吸烟的学生中,估计吸烟学生所占的百分比是多少?
(3)学生的吸烟习惯和父母是否吸烟有关吗?请简要说明理由.
(4)有多大的把握认为学生的吸烟习惯和父母是否吸烟有关?