题目内容
想象一下一个人从出生到死亡,在每个生日都测量身高,并作出这些数据的散点图,这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析,下表是一位母亲给儿子做的成长记录:
年龄/周岁 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
身高/cm | 91.8 | 97.6 | 104.2 | 110.9 | 115.6 | 122.0 | 128.5 |
| |||||||
年龄/周岁 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
身高/cm | 134.2 | 140.8 | 147.6 | 154.2 | 160.9 | 167.5 | 173.0 |
(2)如果年龄相差5岁,则身高有多大差异(3~16岁之间)?
(3)如果身高相差20 cm,其年龄相差多少(3~16岁之间)?
(4)计算残差,说明该函数模型是否能够较好地反映年龄与身高的关系,说明理由.
(1)=6.286x+72 (2) 31.4 cm (3) 3(岁) (4) 拟合效果较好
解析解:(1)设年龄x与身高y之间的回归直线方程为 为了了解调研高一年级新学生的智力水平,某校按l 0%的比例对700名高一学生按性别分别进行“智力评分”抽样检查,测得“智力评分”的频数分布表如下表l,表2. 户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,决定从本单位全体650人中采用分层抽样的办法抽取50人进行问卷调查,得到了如下列联表: 有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次.根据年龄将大众评委分为五组,各组的人数如下:=
x+
,由公式
=
得
≈6.286,
=
-
≈72,所以
=6.286x+72.
(2)如果年龄相差5岁,则预报变量变化6.286×5=31.425,即身高相差约31.4 cm.
(3)如果身高相差20 cm,年龄相差Δx==3.182≈3(岁).
(4)y 91.8 97.6 104.2 110.9 115.6 122.0 128.5 i
90.9 97.1 103.4 109.7 116.0 122.3 128.6 y 134.2 140.8 147.6 154.2 160.9 167.5 173.0 i
134.9
表1:男生“智力评分”频数分布表智力评分
频数
2
5
14
13
4
2
表2:女生“智力评分”频数分布表智力评分
频数
1
7
12
6
3
1
(1)求高一的男生人数并完成下面男生的频率分布直方图;
(2)估计该校学生“智力评分”在[1 65,1 80)之间的概率;
(3)从样本中“智力评分”在[180,190)的男生中任选2人,求至少有1人“智力评分”在[185,190)之间的概率.
已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是 喜欢户外运动 不喜欢户外运动 合计 男性 5 女性 10 合计 50 .
(1)请将上面的列联表补充完整;(2)求该公司男、女员工各多少名;
(3)是否有的把握认为喜欢户外运动与性别有关?并说明你的理由.
下面的临界值表仅供参考:
参考公式:0.15 0.10 0.05 0.025 0.010 0.005 0.001 2.072 2.706 3.841 5.024 6.635 7.879 10.828 ,其中
.
(1)为了调查评委对7位歌手的支持状况,现用分层抽样方法从各组中抽取若干评委,其中从B组抽取了6人.请将其余各组抽取的人数填入下表.组别
A
B
C
D
E
人数
50
100
150
150
50
(2)在(1)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率. 组别
A
B
C
D
E
人数
50
100
150
150
50
抽取人数
6