题目内容
【题目】已知,其中.
(1)当时,设函数,求函数的极值.
(2)若函数在区间上递增,求的取值范围;
(3)证明:.
【答案】(1)极大值,无极小值;(2).(3)见解析
【解析】
(1)先求导,根据导数和函数极值的关系即可求出;
(2)先求导,再函数在区间上递增,分离参数,构造函数,求出函数的最值,问题得以解决;
(3)取得到,取,可得
,累加和根据对数的运算性和放缩法即可证明.
解:(1)当时,设函数,则
令,解得
当时,,当时,
所以在上单调递增,在上单调递减
所以当时,函数取得极大值,即极大值为,无极小值;
(2)因为,
所以,
因为在区间上递增,
所以在上恒成立,
所以在区间上恒成立.
当时,在区间上恒成立,
当时,,
设,则在区间上恒成立.
所以在单调递增,则,
所以,即
综上所述.
(3)由(2)可知当时,函数在区间上递增,
所以,即,
取,则
.
所以
所以
练习册系列答案
相关题目