题目内容
【题目】已知函数,若存在,使得,则的取值范围是( )
A. B.
C. D.
【答案】A
【解析】
先由函数的单调性结合等式,得出,由此得出关于的方程在区间上有实解,利用参变量分离法得出在有实根,转化为直线与函数在区间有交点,利用数形结合思想求解即可.
易知函数在区间上单调递增,则存在,使得不等式成立,所以,,得.
①假设,则,不合乎题意;
②假设,则,不合乎题意;
③假设,则,合乎题意.
由上可知,关于的方程在区间上有实解,
由,得,所以,,构造函数.
则直线与函数在区间有交点.
,令,则,令,得.
当时,;当时,.
所以,函数在处取得最小值,
即,,
所以,对任意的,,则函数在区间上单调递增.
,,
所以,当时,直线与函数在区间有交点.
因此,实数的取值范围是,故选:A.
【题目】某旅游风景区发行的纪念章即将投放市场,根据市场调研情况,预计每枚该纪念章的市场价y(单位:元)与上市时间x(单位:天)的数据如下:
上市时间x天 | 2 | 6 | 20 |
市场价y元 | 102 | 78 | 120 |
(1)根据上表数据,从下列函数中选取一个恰当的函数描述该纪念章的市场价y与上市时间x的变化关系并说明理由:①;②;③;
(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格;
(3)利用你选取的函数,若存在,使得不等式成立,求实数k的取值范围.
【题目】新鲜的荔枝很好吃,但摘下后容易变黑,影响卖相。某超市计划每年六月从精准扶贫户中订购荔枝,每天进货量相同且每公斤20元,当日18时前售价为每公斤24元,18时后以每公斤16元的价格销售完毕。根据往年情况,每天的荔枝需求量与当天平均气温有关,如下表表示:
平均气温t(摄氏度) | ||||
需求量n(公斤) | 50 | 100 | 200 | 300 |
为了确定今年6月1日6月30日的日购数量,统计了前三年六月各天的平均气温,得到如下的频数分布表:
平均气温 | ||||||
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
(1)假设该超市在以往三年内的六月每天进货100公斤,求荔枝为超市带来的日平均利润(结果取整数).
(2)若今年该超市进货量为200公斤,以记录的各需求量的频率作为相应的概率,求当天超市不亏损的概率.
【题目】汽车“定速巡航”技术是用于控制汽车的定速行驶,当汽车被设定为定速巡航状态时,电脑根据道路状况和汽车的行驶阻力自动控制供油量,使汽车始终保持在所设定的车速行驶,而无需司机操纵油门,从而减轻疲劳,促进安全,节省燃料.某汽车公司为测量某型号汽车定速巡航状态下的油耗情况,选择一段长度为240km的平坦高速路段进行测试.经多次测试得到一辆汽车每小时耗油量F(单位:L)与速度v(单位:km/h)()的下列数据:
v | 0 | 40 | 60 | 80 | 120 |
F | 0 | 10 | 20 |
为了描述汽车每小时耗油量与速度的关系,现有以下三种函数模型供选择:
,,.
(1)请选出你认为最符合实际的函数模型,并求出相应的函数解析式.
(2)这辆车在该测试路段上以什么速度行驶才能使总耗油量最少?