题目内容
【题目】若动点在直线上,动点在直线上,设线段的中点为,且,则的取值范围是__________.
【答案】
【解析】
由直线方程可知两直线斜率相等,所以,由平行线线的几何性质知的轨迹为平行于的直线,直线方程为,又点在圆的内部,故的轨迹是如图所示的线段.即原点和距离的平方.由图可知,,,,故答案为.
【方法点晴】本题主要考查轨迹方程及解析几何求最值,属于难题.解决曲线轨迹中的最值问题一般有两种方法:一是几何意义,特别是用曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将曲线轨迹中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.本题是先将转化为直线上的点与原点距离的平方,然后利用几何方法解答的.
【题目】某食品店为了了解气温对销售量的影响,随机记录了该店1月份中5天的日销售量(单位:千克)与该地当日最低气温(单位: )的数据,如下表:
x | 2 | 5 | 8 | 9 | 11 |
y | 12 | 10 | 8 | 8 | 7 |
(1)求出与的回归方程;
(2)判断与之间是正相关还是负相关;若该地1月份某天的最低气温为,请用所求回归方程预测该店当日的销售量;
(3)设该地1月份的日最低气温~,其中近似为样本平均数, 近似为样本方差,求.
附:①回归方程中, , .
②, ,若~,则, .
【题目】“累积净化量”是空气净化器质量的一个重要衡量指标,它是指空气净化从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示,根据《空气净化器》国家标准,对空气净化器的累计净化量有如下等级划分:
累积净化量(克) | 12以上 | |||
等级 |
为了了解一批空气净化器(共5000台)的质量,随机抽取台机器作为样本进行估计,已知这台机器的累积净化量都分布在区间中,按照、、、、均匀分组,其中累积净化量在的所有数据有:4.5,4.6,5.2,5.3,5.7和5.9,并绘制了频率分布直方图,如图所示:
(1)求的值及频率分布直方图中的值;
(2)以样本估计总体,试估计这批空气净化器(共5000台)中等级为的空气净化器有多少台?
(3)从累积净化量在的样本中随机抽取2台,求恰好有1台等级为的概率.