题目内容

【题目】某高新技术公司要生产一批新研发的款手机和款手机,生产一台款手机需要甲材料,乙材料,并且需要花费1天时间,生产一台款手机需要甲材料,乙材料,也需要1天时间,已知生产一台款手机利润是1000元,生产一台款手机的利润是2000元,公司目前有甲、乙材料各,则在不超过120天的情况下,公司生产两款手机的最大利润是__________元.

【答案】210000

【解析】设生产款手机和款手机件,利润之和为元,则根据题意可得,目标函数为

目标函数表示直线的纵轴截距的2000倍,由图可知,当直线经过点点时, 取得最大值。联立方程,解得.所以当,时,目标函数取得最大值, .

点晴:本题考查的是线性规划问题,线性规划问题的实质是把代数问题几何化,即数形结合的思想,需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最值会在可行域的端点或边界上取得.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网