题目内容
【题目】已知椭圆过点,且右焦点为.
(1)求椭圆的方程;
(2)过点的直线与椭圆交于两点,交轴于点.若,求证:为定值;
(3)在(2)的条件下,若点不在椭圆的内部,点是点关于原点的对称点,试求三角形面积的最小值.
【答案】(1)(2)见解析(3)
【解析】
(1)由题意b=2,c=2,所以,椭圆C的方程为。
(2)设A、B、P的坐标分别为。
由知,。
又点A在椭圆C上,则
,
整理得。
由,同理得到
。
由于A、B不重合,即,故m、n是二次方程
的两根,所以m+n=-4,为定值。
(3)依题意,直线l的方程为,即,与椭圆C的方程联立,消去y并整理,得
,
,
所以,而
。
由已知,点P不在椭圆C的内部,得,即,所以的最小值为,故三角形QAB面积的最小值为。
【题目】某公司培训员工某项技能,培训有如下两种方式:
方式一:周一到周五每天培训1小时,周日测试
方式二:周六一天培训4小时,周日测试
公司有多个班组,每个班组60人,现任选两组记为甲组、乙组先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:
第一周 | 第二周 | 第三周 | 第四周 | |
甲组 | 20 | 25 | 10 | 5 |
乙组 | 8 | 16 | 20 | 16 |
用方式一与方式二进行培训,分别估计员工受训的平均时间精确到,并据此判断哪种培训方式效率更高?
在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.
【题目】某校的1000名高三学生参加四门学科的选拔考试,每门试卷共有10道题,每题10分,规定:每门错题成绩记为,错题成绩记为,错题成绩记为,错题成绩记为,在录取时,记为90分,记为80分,记为60分,记为50分.
根据模拟成绩,每一门都有如下统计表:
答错 题数 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
频数 | 10 | 90 | 100 | 150 | 150 | 200 | 100 | 100 | 50 | 49 | 1 |
已知选拔性考试成绩与模拟成绩基本吻合.
(1)设为高三学生一门学科的得分,求的分布列和数学期望;
(2)预测考生4门总分为320概率.