题目内容
【题目】对于函数和,设,,若存在,使得,则称与互为“零点相邻函数”.若函数与互为“零点相邻函数”,则实数的取值范围是
A. B. C. D.
【答案】D
【解析】
先得出函数f(x)=ex﹣1+x﹣2的零点为x=1.再设g(x)=x2﹣ax﹣a+3的零点为β,根据函数f(x)=ex﹣1+x﹣2与g(x)=x2﹣ax﹣a+3互为“零点关联函数”,利用新定义的零点关联函数,有|1﹣β|≤1,从而得出g(x)=x2﹣ax﹣a+3的零点所在的范围,最后利用数形结合法求解即可.
函数f(x)=ex﹣1+x﹣2的零点为x=1.
设g(x)=x2﹣ax﹣a+3的零点为β,
若函数f(x)=ex﹣1+x﹣2与g(x)=x2﹣ax﹣a+3互为“零点关联函数”,
根据零点关联函数,则|1﹣β|≤1,
∴0≤β≤2,如图
由于g(x)=x2﹣ax﹣a+3必过点A(﹣1,4),
故要使其零点在区间[0,2]上,则或,
解得2≤a≤3,
故选:D
【题目】在平面直角坐标系xOy中,双曲线:经过点,其中一条近线的方程为,椭圆:与双曲线有相同的焦点椭圆的左焦点,左顶点和上顶点分别为F,A,B,且点F到直线AB的距离为.
求双曲线的方程;
求椭圆的方程.
【题目】某基地蔬菜大棚采用无土栽培方式种植各类蔬菜.根据过去50周的资料显示,该基地周光照量(小时)都在30小时以上,其中不足50小时的有5周,不低于50小时且不超过70小时的有35周,超过70小时的有10周.根据统计,该基地的西红柿增加量(千克)与使用某种液体肥料的质量(千克)之间的关系如图所示.
(1)依据上图,是否可用线性回归模型拟合与的关系?请计算相关系数并加以说明(精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合)
(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪运行台数受周光照量限制,并有如下关系:
周光照量(单位:小时) | |||
光照控制仪运行台数 | 3 | 2 | 1 |
若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以频率作为概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?
附:相关系数公式,
参考数据:,.