题目内容
【题目】已知函数.
(I)试判断函数的单调性;
(Ⅱ)若函数在上有且仅有一个零点,
(i)求证:此零点是的极值点;
(ⅱ)求证:.
(本题可能会用到的数据:)
【答案】(I)见解析;(Ⅱ)(i)证明见解析;(ii)证明见解析.
【解析】
(Ⅰ)先求得导函数,然后对分类讨论,即可得单调区间.
(Ⅱ)(i)先求得反函数,代入即可求得的解析式.求得,根据仅有一个零点,可知在单调递增,通过检验与函数值的符号,可判断零点所在区间为.通过判断时,时,,即可知极小值点为.
(ⅱ)根据(i)由可解得.构造函数通过检验与可知,通过分析在单调递增,可知当时, 成立,即证明.
(I)
时,恒成立
所以在单调递增,没有单调递减区间.
时,解不等式可得:,
所以此时在单调递减,在单调递增.
综上:时,在单调递减,在单调递增,
时,在单调递增,没有单调递减区间.
(Ⅱ)(i)
则
函数在上有且仅有一个零点
在单调递增
又因为
且
,使得
且时,时,
在单调递减,单调递增
在上有且仅有一个零点,所以此零点为极小值点
(ii)由(i)得,即,
解得,且.
设
,则在单调递减.
因为
.
又在单调递增,
,
【题目】近年,国家逐步推行全新的高考制度.新高考不再分文理科,某省采用模式,其中语文、数学、外语三科为必考科目,每门科目满分均为分.另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物门科目中自选门参加考试(选),每门科目满分均为分.为了应对新高考,某高中从高一年级名学生(其中男生人,女生人)中,采用分层抽样的方法从中抽取名学生进行调查,其中,女生抽取人.
(1)求的值;
(2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的名学生进行问卷调查(假定每名学生在“物理”和“地理”这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的一个不完整的列联表,请将下面的列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;
选择“物理” | 选择“地理” | 总计 | |
男生 | |||
女生 | |||
总计 |
(3)在抽取到的名女生中,按(2)中的选课情况进行分层抽样,从中抽出名女生,再从这名女生中抽取人,设这人中选择“物理”的人数为,求的分布列及期望.附:,
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |