题目内容
【题目】为了对2016年某校中考成绩进行分析,在60分以上的全体同学中随机抽出8位,他们的数学分数(已折算为百分制)从小到大排是60、65、70、75、80、85、90、95,物理分数从小到大排是72、77、80、84、88、90、93、95. 参考公式:相关系数 ,
回归直线方程是: ,其中 ,
参考数据: , , , .
(1)若规定85分以上为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;
(2)若这8位同学的数学、物理、化学分数事实上对应如下表:
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学分数x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分数y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
化学分数z | 67 | 72 | 76 | 80 | 84 | 87 | 90 | 92 |
①用变量y与x、z与x的相关系数说明物理与数学、化学与数学的相关程度;
②求y与x、z与x的线性回归方程(系数精确到0.01),当某同学的数学成绩为50分时,估计其物理、化学两科的得分.
【答案】
(1)解:这8位同学中恰有3位同学的数学和物理分数均为优秀,
则需要先从物理4 个优秀分数中选出3个与数学分数对应,
不同的种数是 (或 ),
然后剩下的5个数学分数和物理分数任意对应,不同的种数是 ;
根据乘法原理,满足条件的不同种数是 ;
这8位同学的物理分数和数学分数分别对应种数共有 ,
故所求的概率为
(2)解:①变量y与x、z与x的相关系数分别是
,
可以看出:物理与数学、化学与数学成绩都是高度正相关;
②设y与x、z与x的线性回归方程分别是 ,
根据所给的数据,计算出
,
,
所以y与x、z与x的回归方程分别是
、 ,
当x=50时, ,
∴当该生的数学为50分时,其物理、化学成绩分别约为66.85分、61.2分
【解析】(1)求出从这8位同学中恰有3位同学的数学和物理分数均为优秀的基本事件数,以及这8位同学的物理分数和数学分数分别对应基本事件数,计算所求的概率值(2)①变量y与x、z与x的相关系数,得出物理与数学、化学与数学成绩都是高度正相关;②求出y与x、z与x的线性回归方程,由此计算x=50时y与z的值即可.
【题目】某贫困地区有1500户居民,其中平原地区1050户,山区450户,为调查该地区2017年家庭收入情况,从而更好地实施“精准扶贫”,采用分层抽样的方法,收集了150户家庭2017年年收入的样本数据(单位:万元)
(I)应收集多少户山区家庭的样本数据?
(Ⅱ)根据这150个样本数据,得到2017年家庭收入的频率分布直方图(如图所示),其中样本数据分组区间为, , , ,,.如果将频率率视为概率,估计该地区2017年家庭收入超过1.5万元的概率;
(Ⅲ)样本数据中,由5户山区家庭的年收入超过2万元,请完成2017年家庭收入与地区的列联表,并判断是否有90%的把握认为“该地区2017年家庭年收入与地区有关”?
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
超过2万元 | 不超过2万元 | 总计 | |
平原地区 | |||
山区 | 5 | ||
总计 |