ÌâÄ¿ÄÚÈÝ
11£®ÎÒÊС°Ë®µ¾Á¼ÖÖÑо¿Ëù¡±¶Ôijˮµ¾Á¼Öֵķ¢Ñ¿ÂÊÓëÖçҹβîÖ®¼äµÄ¹Øϵ½øÐÐÑо¿£®ËûÃÇ·Ö±ð¼Ç¼ÁË3ÔÂ21ÈÕÖÁ3ÔÂ25ÈÕµÄÖçҹβÿÌì30¿ÅË®µ¾ÖÖ×ӵķ¢Ñ¿Êý£¬²¢µÃµ½Èç±í×ÊÁÏÈÕÆÚ | 3ÔÂ21ÈÕ | 3ÔÂ22ÈÕ | 3ÔÂ23ÈÕ | 3ÔÂ24ÈÕ | 3ÔÂ25ÈÕ |
βîx£¨¡æ£© | 10 | 11 | 13 | 12 | 9 |
·¢Ñ¿Êýy£¨¿Å£© | 15 | 16 | 17 | 14 | 13 |
£¨2£©´Ó3ÔÂ21ÈÕÖÁ3ÔÂ25ÈÕÖÐÈÎÑ¡2Ì죬¼ÇÖÖ×Ó·¢Ñ¿Êý³¬¹ý15¿ÅµÄÌìÊýΪX£¬ÇóXµÄ¸ÅÂÊ·Ö²¼ÁУ¬²¢ÇóÆäÊýѧÆÚÍûEXºÍ·½²îDX£®
£¨²Î¿¼¹«Ê½¼°²Î¿¼Êý¾Ýb=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i}^{n}{{x}_{i}}^{2}-n\stackrel{-2}{x}}$£¬a=$\overline{y}$-b$\overrightarrow{x}$£¬$\sum_{i}^{n}$xiyi=832£¬$\sum_{i}^{n}$xi2=615£©
·ÖÎö £¨1£©Çó³ö»Ø¹é·½³ÌµÄÑù±¾ÖÐÐĵÄ×ø±ê£¬È»ºóÇó½â»Ø¹é·½³ÌµÄ¼¸ºÎÁ¿£¬µÃµ½»Ø¹é·½³Ì¼´¿É£®
£¨2£©Çó³öÖÖ×Ó·¢Ñ¿Êý³¬¹ý15¿ÅµÄÌìÊýΪX£¬Çó½âÏàÓ¦µÄ¸ÅÂÊ£¬µÃµ½·Ö²¼ÁУ¬È»ºóÇó½âÆÚÍûÓë·½²î£®
½â´ð ½â£º£¨1£©ÒòΪ$\overline{x}$=$\frac{10+11+13+12+9}{5}$=11£¬$\overrightarrow{y}=\frac{15+16+17+14+13}{5}$=15£¬
ËùÒÔb=$\frac{832-5¡Á11¡Á15}{615-5¡Á{11}^{2}}$=0.7£¬ÓÚÊÇa=15-0.7¡Á11=7.3£®
¹ÊÏßÐԻع鷽³ÌΪ$\hat{y}=0.7x+7.3$¡£¨3·Ö£©
µ±x=14£¬y=0.7¡Á14+7.3=17£¬1£¬¼´3ÔÂ26ÈÕ½þÅݵÄ30¿ÅË®µ¾ÖÖ×ӵķ¢Ñ¿Êý17¿Å¡£¨6·Ö£©
£¨2£©ÒòΪX=0£¬1£¬2£¬P£¨X=0£©=$\frac{{C}_{3}^{2}}{{C}_{5}^{2}}=\frac{3}{10}$£¬P£¨X=1£©=$\frac{{C}_{3}^{1}{C}_{2}^{1}}{{C}_{5}^{2}}=\frac{6}{10}$£¬P£¨X=2£©=$\frac{{C}_{2}^{2}}{{C}_{5}^{2}}=\frac{1}{10}$£¬
X | 0 | 1 | 2 |
P | $\frac{3}{10}$ | $\frac{6}{10}$ | $\frac{1}{10}$ |
DX=EX2-£¨EX£©2=$\frac{9}{25}$¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²é»Ø¹éÖ±Ïß·½³ÌµÄÇ󷨣¬¸ÅÂʵķֲ¼ÁÐÆÚÍûÒÔ¼°·½²îµÄÇ󷨣¬¿¼²é¼ÆËãÄÜÁ¦£®
A£® | £¨-1£¬1£© | B£® | [1£¬3£© | C£® | £¨0£¬1£© | D£® | £¨-1£¬0£© |
A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
A£® | B£® | C£® | D£® |
A£® | ³ä·Ö¶ø²»±ØÒªÌõ¼þ | B£® | ±ØÒª¶ø²»³ä·ÖÌõ¼þ | ||
C£® | ³ä·Ö±ØÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |