题目内容
2.设集合M={x|x2-2x-3<0},N=$\left\{{y|y=\sqrt{{x^2}+1},x∈R}\right\}$,则M∩N等于( )A. | (-1,1) | B. | [1,3) | C. | (0,1) | D. | (-1,0) |
分析 求出集合的等价条件,结合集合的基本运算即可得到结论.
解答 解:M={x|x2-2x-3<0}={x|-1<x<3},N=$\left\{{y|y=\sqrt{{x^2}+1},x∈R}\right\}$={y|y≥1},
则M∩N={x|1≤x<3},
故选:B
点评 本题主要考查集合的基本运算,求出集合的等价条件是解决本题的关键.
练习册系列答案
相关题目
7.已知集合A={y|y=-x2+2,x∈R},B={y|y=-x+2,x∈R},则A∩B=( )
A. | (-∞,2] | B. | {(0,2),(1,1)} | C. | {1,2} | D. | (0,2),(1,1) |
14.已知集合A={y|y=-x2+1,x∈R},B={y|y=log2x},则A∩B=( )
A. | (-∞,1] | B. | R | C. | ∅ | D. | [1,+∞) |
11.我市“水稻良种研究所”对某水稻良种的发芽率与昼夜温差之间的关系进行研究.他们分别记录了3月21日至3月25日的昼夜温差及每天30颗水稻种子的发芽数,并得到如表资料
(1)请根据以上资料,求出y关于x的线性回归方程;据气象预报3月26日的昼夜温差为14℃,请你预测3月26日浸泡的30颗水稻种子的发芽数(结果保留整数).
(2)从3月21日至3月25日中任选2天,记种子发芽数超过15颗的天数为X,求X的概率分布列,并求其数学期望EX和方差DX.
(参考公式及参考数据b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i}^{n}{{x}_{i}}^{2}-n\stackrel{-2}{x}}$,a=$\overline{y}$-b$\overrightarrow{x}$,$\sum_{i}^{n}$xiyi=832,$\sum_{i}^{n}$xi2=615)
日期 | 3月21日 | 3月22日 | 3月23日 | 3月24日 | 3月25日 |
温差x(℃) | 10 | 11 | 13 | 12 | 9 |
发芽数y(颗) | 15 | 16 | 17 | 14 | 13 |
(2)从3月21日至3月25日中任选2天,记种子发芽数超过15颗的天数为X,求X的概率分布列,并求其数学期望EX和方差DX.
(参考公式及参考数据b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i}^{n}{{x}_{i}}^{2}-n\stackrel{-2}{x}}$,a=$\overline{y}$-b$\overrightarrow{x}$,$\sum_{i}^{n}$xiyi=832,$\sum_{i}^{n}$xi2=615)