题目内容
【题目】已知函数f(x)=,g(x)=(a>0,且a≠1).
(1)求函数φ(x)=f(x)+g(x)的定义域;
(2)试确定不等式f(x)≤g(x)中x的取值范围.
【答案】(1).(2)见解析.
【解析】
(1) 函数φ(x)=f(x)+g(x)的定义域为f(x)=和 g(x)=定义域的交集,列出方程组求解即可. (2) f(x)≤g(x),即为,对,两种情况分类讨论,即可求出x的取值范围.
解:(1)φ(x)=f(x)+g(x)的定义域为:,解得:,所以定义域为.
(2) f(x)≤g(x),即为,定义域为.
当时,,解得:,所以x的取值范围为.
当时,,解得:,所以x的取值范围为.
综上可得:当时,x的取值范围为.
当时,x的取值范围为.
练习册系列答案
相关题目