题目内容
【题目】已知数列满足: , .
(1)设,求数列的通项公式;
(2)求数列的前项和.
【答案】(Ⅰ)(Ⅱ)
【解析】试题分析:(1)由可得,则,利用累加法可得;(2)由(1)可知,利用分组求和法求和,分别利用等差数列求和公式求出数列的前项和,利用错位相减法结合等比数列的求和公式可得数列的前项和,从而可得数列的前项和.
(1)由可得
累加法可得:
化简并代入得: ;
(2)由(Ⅰ)可知,设数列的前项和
则 ①
②
【易错点晴】本题主要考查递推公式求通项公式、分组求和,等差数列求和公式、等比数列求和公式、“错位相减法”求数列的和,属于难题. “错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项 的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以.
练习册系列答案
相关题目