题目内容

4.已知定义域为(1,+∞)的函数f(x)满足:
①对任意x∈(1,+∞),恒有f(2x)=f(x)+1成立;
②当满足x∈(1,2]时,f(x)=sin$\frac{πx}{2}$.求:
(1)f(4);
(2)f(2n)(n∈N*).

分析 (1)f(4)=f(2×2)=f(2)+1=sinπ+1=1,
(2)分别求出f(23),f(24),f(25),得到规律.

解答 解:(1)当满足x∈(1,2]时,f(x)=sin$\frac{πx}{2}$,
∵任意x∈(1,+∞),恒有f(2x)=f(x)+1成立,
∴f(4)=f(2×2)=f(2)+1=sinπ+1=1,
(2)f(23)=f(2×4)=f(4)+1=2=3-1,
f(24)=f(2×23)=f(23)+1=3=4-1,
f(25)=f(2×24)=f(24)+1=4=5-1,
有以上可知,f(2n)=n-1.

点评 本题主要考查抽象函数的性质,以及综合分析能力和归纳推理的能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网