题目内容
【题目】如图,在矩形中,,,点是边上一点,且,点是的中点,将沿着折起,使点运动到点处,且满足.
(1)证明:平面;
(2)求二面角的余弦值.
【答案】(1)见解析;(2)
【解析】
(1)取的中点,连接,,由,进而,由,得. 进而平面,进而结论可得证(2)(方法一)过点作的平行线交于点,以点为坐标原点,所在直线分别为轴、轴、轴建立如图所示的空间直角坐标系,求得平面平面的法向量,由二面角公式求解即可(方法二)取的中点,上的点,使,连接,得,,得二面角的平面角为,再求解即可
(1)证明:取的中点,连接,,由已知得,所以,又点是的中点,所以.
因为,点是线段的中点,
所以.
又因为,所以,从而平面,
所以,又,不平行,
所以平面.
(2)(方法一)由(1)知,过点作的平行线交于点,以点为坐标原点,所在直线分别为轴、轴、轴建立如图所示的空间直角坐标系,则点,,,,
所以,,.
设平面的法向量为,
由,得,令,得.
同理,设平面的法向量为,
由,得,
令,得.
所以二面角的余弦值为.
(方法二)取的中点,上的点,使,连接,易知,.
由(1)得,所以平面,所以,
又,所以平面,
所以二面角的平面角为.
又计算得,,,
所以.
练习册系列答案
相关题目