题目内容

7.设x1,x2是函数f(x)=lnx+$\frac{1}{2}$x2-(a+$\frac{4}{a}$)x+1的两个极值点,且x1<x2,a>0.
(Ⅰ)求证:x1x2为定值;
(Ⅱ)求f(x1)+f(x2)的取值范围;
(Ⅲ)求f(x2)-f(x1)的最大值.

分析 (Ⅰ)先确定函数f(x)=lnx+$\frac{1}{2}$x2-(a+$\frac{4}{a}$)x+1的定义域,再求导f′(x)=$\frac{1}{x}$+x-(a+$\frac{4}{a}$)=$\frac{{x}^{2}-(a+\frac{4}{a})x+1}{x}$,从而由根与系数的关系可证明;
(Ⅱ)由(Ⅰ)知$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=a+\frac{4}{a}}\\{{x}_{1}{x}_{2}=1}\\{{x}_{2}>{x}_{1}>0}\end{array}\right.$,从而化简f(x1)+f(x2)=ln(x1x2)+$\frac{1}{2}$(${{x}_{1}}^{2}$+${{x}_{2}}^{2}$)-(a+$\frac{4}{a}$)(x1+x2)+2=$\frac{1}{2}$[(x1+x22-2x1x2]-(a+$\frac{4}{a}$)(x1+x2)+2
=-$\frac{1}{2}$(a+$\frac{4}{a}$)2+1;从而求值域;
(Ⅲ)由x1x2=1化简f(x2)-f(x1)=2lnx2-$\frac{1}{2}$(a+$\frac{4}{a}$)(x2-$\frac{1}{{x}_{2}}$),(x2>1);再令g(x)=2lnx-$\frac{1}{2}$(a+$\frac{4}{a}$)(x-$\frac{1}{x}$),从而可判断g(x)=2lnx-$\frac{1}{2}$(a+$\frac{4}{a}$)(x-$\frac{1}{x}$)在(1,+∞)上是减函数;从而再由$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=4}\\{{x}_{1}{x}_{2}=1}\end{array}\right.$解得x2=2+$\sqrt{3}$;即当且仅当a=$\frac{4}{a}$,即a=2时,x2有最小值2+$\sqrt{3}$;从而解得.

解答 解:(Ⅰ)证明:f(x)=lnx+$\frac{1}{2}$x2-(a+$\frac{4}{a}$)x+1的定义域为(0,+∞),
f′(x)=$\frac{1}{x}$+x-(a+$\frac{4}{a}$)=$\frac{{x}^{2}-(a+\frac{4}{a})x+1}{x}$,
令f′(x)=0得:x2-(a+$\frac{4}{a}$)x+1=0,由于a>0,则△=(a+$\frac{4}{a}$)2-4>0;
因为x1,x2是函数f(x)=lnx+$\frac{1}{2}$x2-(a+$\frac{4}{a}$)x+1的两个极值点,
故x1x2=1.
(Ⅱ)由(Ⅰ)知$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=a+\frac{4}{a}}\\{{x}_{1}{x}_{2}=1}\\{{x}_{2}>{x}_{1}>0}\end{array}\right.$,
∴f(x1)+f(x2)=ln(x1x2)+$\frac{1}{2}$(${{x}_{1}}^{2}$+${{x}_{2}}^{2}$)-(a+$\frac{4}{a}$)(x1+x2)+2
=$\frac{1}{2}$[(x1+x22-2x1x2]-(a+$\frac{4}{a}$)(x1+x2)+2
=-$\frac{1}{2}$(a+$\frac{4}{a}$)2+1≤-7(当且仅当a=$\frac{4}{a}$,即a=2时,等号成立);
∴f(x1)+f(x2)的取值范围为(-∞,-7];
(Ⅲ)∵x1x2=1,
∴f(x2)-f(x1)=lnx2+$\frac{1}{2}$x22-(a+$\frac{4}{a}$)x2+1-(lnx1+$\frac{1}{2}$x12-(a+$\frac{4}{a}$)x1+1)
=2lnx2-$\frac{1}{2}$(a+$\frac{4}{a}$)(x2-$\frac{1}{{x}_{2}}$),(x2>1);
令g(x)=2lnx-$\frac{1}{2}$(a+$\frac{4}{a}$)(x-$\frac{1}{x}$),
则g′(x)=$\frac{2}{x}$-$\frac{1}{2}$(a+$\frac{4}{a}$)(1+$\frac{1}{{x}^{2}}$)
=-$\frac{(a+\frac{4}{a}){x}^{2}-4x+a+\frac{4}{a}}{2{x}^{2}}$≤0,
故g(x)=2lnx-$\frac{1}{2}$(a+$\frac{4}{a}$)(x-$\frac{1}{x}$)在(1,+∞)上是减函数;
当且仅当a=$\frac{4}{a}$,即a=2时,
由$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=4}\\{{x}_{1}{x}_{2}=1}\end{array}\right.$解得:x2=2+$\sqrt{3}$;
即当且仅当a=$\frac{4}{a}$,即a=2时,x2有最小值2+$\sqrt{3}$;
此时f(x2)-f(x1)有最大值为2ln(2+$\sqrt{3}$)-2(2+$\sqrt{3}$-(2-$\sqrt{3}$))
=2ln(2+$\sqrt{3}$)-4$\sqrt{3}$.

点评 本题为导数、不等式的综合,主要考查导数的应用,考查考生的计算能力及分析问题、解决问题的能力、化归与转化思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网