题目内容
13.求证:C${\;}_{n}^{0}$${C}_{n}^{1}$+${{C}_{n}^{1}}_{\;}^{\;}$${C}_{n}^{2}$+…+${C}_{n}^{n-1}$${C}_{n}^{n}$=$\frac{(2n)!}{(n-1)!(n+1)!}$.分析 由(x+1)n(x+1)n=(x+1)2n,比较左边与右边的xn-1的系数即可得出.
解答 证明:∵(x+1)n(x+1)n=(x+1)2n,
则左边xn-1的系数为:C${\;}_{n}^{0}$${C}_{n}^{1}$+${{C}_{n}^{1}}_{\;}^{\;}$${C}_{n}^{2}$+…+${C}_{n}^{n-1}$${C}_{n}^{n}$,右边xn-1的系数=${∁}_{2n}^{n-1}$=$\frac{(2n)!}{(n-1)!(n+1)!}$.
∴C${\;}_{n}^{0}$${C}_{n}^{1}$+${{C}_{n}^{1}}_{\;}^{\;}$${C}_{n}^{2}$+…+${C}_{n}^{n-1}$${C}_{n}^{n}$=$\frac{(2n)!}{(n-1)!(n+1)!}$.
点评 本题考查了二项式定理的应用、组合数的计算公式,考查了计算能力,属于基础题.
练习册系列答案
相关题目