题目内容
【题目】给出两个命题:
命题甲:关于x的不等式x2+(a﹣1)x+a2≤0的解集为;
命题乙:函数y=(2a2﹣a)x为增函数.
(1)甲、乙至少有一个是真命题;
(2)甲、乙有且只有一个是真命题;
分别求出符合(1)(2)的实数a的取值范围.
【答案】
(1)解:当甲为真命题时,△=(a﹣1)2﹣4a2<0,解得a 或a<﹣1,即A={a|a 或a<﹣1}
乙为真命题时,2a2﹣a>1,解得a>1或a< ,
即B={a|a>1或a<﹣ }.
甲、乙至少有一个是真命题,应取A,B的并集,此时a 或a<
(2)解:甲、乙有且只有一个是真命题,有两种情况:
当甲真乙假时, ,
当甲假乙真时, .
综上 或
【解析】分别判断两个命题的真假,然后确定实数a的取值范围.
【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
【题目】2016年备受瞩目的二十国集团领导人第十一次峰会于9月4~5日在杭州举办,杭州G20筹委会已经招募培训翻译联络员1000人、驾驶员2000人,为测试培训效果,采取分层抽样的方法从翻译联络员、驾驶员中共随机抽取60人,对其做G20峰会主题及相关服务职责进行测试,将其所得分数(分数都在60~100之间)制成频率分布直方图如下图所示,若得分在90分及其以上(含90分)者,则称其为“G20通”.
(Ⅰ)能否有90%的把握认为“G20通”与所从事工作(翻译联络员或驾驶员)有关?
(Ⅱ)从参加测试的成绩在80分以上(含80分)的驾驶员中随机抽取4人,4人中“G20通”的人数为随机变量X,求X的分布列与数学期望.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
附参考公式与数据: .
【题目】某个体服装店经营某种服装,该服装店每天所获利润y(元)与每天售出这种服装件数x之间的一组数据关系如下表:
x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 66 | 69 | 74 | 81 | 89 | 90 | 91 |
(1)求利润y与每天售出件数x之间的回归方程 (回归直线的斜率用分数表示).
(2)若该服装店某天销售服装13件,估计可获利润多少元?