题目内容

【题目】如图,江的两岸可近似的看成两平行的直线,江岸的一侧有A,B两个蔬菜基地,江的另一侧点C处有一个超市.已知A、B、C中任意两点间的距离为20千米.超市欲在AB之间建一个运输中转站D,A,B两处的蔬菜运抵D处后,再统一经过货轮运抵C处.由于A,B两处蔬菜的差异,这两处的运输费用也不同.如果从A处出发的运输费为每千米2元,从B处出发的运输费为每千米1元,货轮的运输费为每千米3元.

(1)设∠ADC=α,试将运输总费用S(单位:元)表示为α的函数S(α),并写出自变量的取值范围;
(2)问中转站D建在何处时,运输总费用S最小?并求出最小值.

【答案】
(1)解:由题在△ACD中,∵∠CAD=∠ABC=∠ACB= ,∠CDA=α,∴∠ACD= ﹣α.

又AB=BC=CA=20,△ACD中,

由正弦定理知 = = ,得CD= ,AD=

∴S=2AD+BD+3CD=AD+3CD+20= + +20

=10 +20 ( <α<


(2)解:S′=10 ,令S′=0,得cosα=﹣

当cosα<﹣ 时,S′<0;当cosα>﹣ 时,S′>0,∴当cosα=﹣ 时S取得最小值.

此时,sinα= ,AD=10﹣

∴中转站距A处10﹣ 千米时,运输成本S最小


【解析】(1)由题在△ACD中,由正弦定理求得CD、AD的值,即可求得运输成本S的解析式.(2)利用导数求得cosα=﹣ 时,函数S取得极小值,由此可得中转点D到A的距离以及S的最小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网