题目内容

(本小题12分)在直三棱柱(侧棱垂直底面)中,

(Ⅰ)若异面直线所成的角为,求棱柱的高;
(Ⅱ)设的中点,与平面所成的角为,当棱柱的高变化时,求的最大值.

(1)1(2)

解析试题分析:解:建立如图2所示的空间直角坐标系,设,则有


.                       ……… 2分
(Ⅰ)因为异面直线所成的角,所以
,得,解得.              ………… 6分
(Ⅱ)由的中点,得,于是.
设平面的法向量为,于是由,可得
 即 可取, ………… 8分
于是.而. 

,………………………………10分
因为,当且仅当,即时,等号成立.
所以
故当时,的最大值.               ………………1 2分
考点:本试题考查了棱柱中距离和角的求解。
点评:对于几何体中的高的求解,可以借助于勾股定理来得到,同时对于线面角的求解,一般分为三步骤:先作,二证,三解。这也是所有求角的一般步骤,属于中档题。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网