题目内容

【题目】设数列的首项,前项和满足关系式.

(1)求证:数列是等比数列;

(2)设数列的公比为,作数列,使,求数列的通项公式;

(3)数列满足条件(2),求和:.

【答案】(1)见解析.

(2).

(3).

【解析】

(1)利用,求得数列的递推式,整理得,进而可推断出时,数列成等比数列,然后分别求得,验证亦符合,进而可推断出是一个首项为1,公比为的等比数列;(2)把 的解析式代入,进而可知,判断出是一个首项为1,公差为1的等差数列.进而根据等差数列的通项公式求得答案;(3)是等差数列.进而可推断出也是首项分别为12,公差均为2的等差数列,进而用分组法可求得结果

(1)因为

,得,所以.

又由,得.又因为,所以.

所以是一个首项为1,公比为的等比数列.

(2)由,得

.

所以是一个首项为1,公差为1的等差数列.于是.

(3)由,可知是首项分别为1和2,公差均为2的等差数列,于是

所以

.

练习册系列答案
相关题目

【题目】近年来,随着汽车消费的普及,二手车流通行业得到迅猛发展.某汽车交易市场对2017 年成交的二手车的交易前的使用时间(以下简称“使用时间”)进行统计,得到如图1所示的频率分布直方图,在图1对使用时间的分组中,将使用时间落入各组的频率视为概率.

(1)若在该交易市场随机选取3辆2017年成交的二手车,求恰有2辆使用年限在的概率;

(2)根据该汽车交易市场往年的数据,得到图2所示的散点图,其中 (单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.

①由散点图判断,可采用作为该交易市场二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中):

试选用表中数据,求出关于的回归方程;

②该汽车交易市场拟定两个收取佣金的方案供选择.

甲:对每辆二手车统—收取成交价格的的佣金;

乙:对使用8年以内(含8年)的二手车收取成交价格的的佣金,对使用时间8年以上(不含 8年)的二手车收取成交价格的的佣金.

假设采用何种收取佣金的方案不影响该交易市场的成交量,根据回归方程和图表1,并用,各时间组的区间中点值代表该组的各个值.判断该汽车交易市场应选择哪个方案能获得更多佣金.

附注:

于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

②参考数据:.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网