题目内容
【题目】已知顶点是坐标原点的抛物线的焦点在轴正半轴上,圆心在直线上的圆与轴相切,且关于点对称.
(1)求和的标准方程;
(2)过点的直线与交于,与交于,求证:.
【答案】(1),;(2)证明见解析.
【解析】分析:(1)设的标准方程为,由题意可设.结合中点坐标公式计算可得的标准方程为.半径,则的标准方程为.
(2)设的斜率为,则其方程为,由弦长公式可得.联立直线与抛物线的方程有.设,利用韦达定理结合弦长公式可得 .则.即 .
详解:(1)设的标准方程为,则.
已知在直线上,故可设.
因为关于对称,所以
解得
所以的标准方程为.
因为与轴相切,故半径,所以的标准方程为.
(2)设的斜率为,那么其方程为,
则到的距离,所以.
由消去并整理得:.
设,则,
那么 .
所以.
所以,即 .
练习册系列答案
相关题目