题目内容
已知函数
且![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002609519.png)
(Ⅰ)试用含
的代数式表示
;
(Ⅱ)求
的单调区间;
(Ⅲ)令
,设函数
在
处取得极值,记点
,证明:线段
与曲线
存在异于
、
的公共点;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002593954.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002609519.png)
(Ⅰ)试用含
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002625283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002640299.png)
(Ⅱ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002656447.png)
(Ⅲ)令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002671346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002656447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002687621.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240030027031043.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002718513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002656447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002749399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002749357.png)
(Ⅰ)
;(Ⅱ)当
时,函数
的单调增区间为
和
,单调减区间为
;当
时,函数
的单调增区间为R;当
时,函数
的单调增区间为
和
,单调减区间为![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002921564.png)
(Ⅲ)易得
,而
的图像在
内是一条连续不断的曲线,
故
在
内存在零点
,这表明线段
与曲线
有异于
的公共点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002765503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002781370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002656447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002812642.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002827526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002827570.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002843337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002656447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002874359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002656447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002890519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002905644.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002921564.png)
(Ⅲ)易得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002937871.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002952473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002968477.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002952473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002968477.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003015324.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002718513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002656447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003061550.png)
试题分析:解法一:(Ⅰ)依题意,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003061813.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003077770.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002765503.png)
(Ⅱ)由(Ⅰ)得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240030031081062.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240030031241173.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003124577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003139332.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003155490.png)
①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002781370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003311478.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003311266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003327465.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002656447.png)
![]() | ![]() | ![]() | ![]() |
![]() | + | — | + |
![]() | 单调递增 | 单调递减 | 单调递增 |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002656447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002812642.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002827526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002827570.png)
②由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002843337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003529457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003545551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003139332.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003576539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002656447.png)
③当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002874359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003623489.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002656447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002890519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002905644.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002921564.png)
综上:
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002781370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002656447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002812642.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002827526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002827570.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002843337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002656447.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002874359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002656447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002890519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002905644.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002921564.png)
(Ⅲ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002671346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003919835.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003935790.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003951565.png)
由(Ⅱ)得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002656447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002890519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003997545.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003004013467.png)
所以函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002656447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003004044553.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240030040441025.png)
所以直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002718513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003004075661.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240030040911228.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003004107652.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003004122779.png)
易得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002937871.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002952473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002968477.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002952473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002968477.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003015324.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002718513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002656447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003061550.png)
解法二:
(Ⅲ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002671346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003004309845.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003004325783.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003951565.png)
由(Ⅱ)得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002656447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002890519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003997545.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003004013467.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002656447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003951565.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240030044651032.png)
所以直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002718513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003004075661.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240030046061248.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003004107652.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003004653662.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240030046681704.png)
所以线段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002718513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003002656447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003003061550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003004731538.png)
点评:本题是在知识的交汇点处命题,将函数、导数、不等式、方程的知识融合在一起进行考查,重点考查了利用导数研究函数的极值与最值等知识.导数题目是高考的必考题,且常考常新,但是无论如何少不了对基础知识的考查,因此备考中要强化基础题的训练.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目