题目内容
【题目】在科普知识竞赛前的培训活动中,将甲、乙两名学生的6次培训成绩(百分制)制成如图所示的茎叶图:
(1)若从甲、乙两名学生中选择1人参加该知识竞赛,你会选哪位?请运用统计学的知识说明理由;
(2)若从学生甲的6次培训成绩中随机选择2个,记选到的分数超过87分的个数为ξ,求ξ的分布列和数学期望.
【答案】
(1)解:学生甲的平均成绩 = =82,
学生乙的平均成绩 = =82,
又S2甲= [(68﹣82)2+(76﹣82)2+(79﹣82)2+(86﹣82)2+(88﹣82)2+(95﹣82)2]=77,
S2乙= [(71﹣82)2+(75﹣82)2+(82﹣82)2+(84﹣82)2+(86﹣82)2+(94﹣82)2]= ,
则 = ,S2甲>S2乙,
说明甲、乙的平均水平一样,但乙的方差小,则乙发挥更稳定,故应选择学生乙参加知识竞赛.(6分)
(2)解:ξ的所有可能取值为0,1,2,
则P(ξ=0)= = ,P(ξ=1)= = ,P(ξ=2)= = ,
ξ的分布列为
ξ | 0 | 1 | 2 |
P |
所以数学期望Eξ= =
【解析】(1)分别求出从甲、乙两名学生中的平均成绩和方差,得到甲、乙的平均水平一样,但乙的方差小,则乙发挥更稳定,故应选择学生乙参加知识竞赛.(2)ξ的所有可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和数学期望.
【题目】某地区2008年至2014年农村居民家庭纯收入y(单位:千元)的数据如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(Ⅰ)求y关于的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2008年至2014年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2016年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:,.
【题目】某人事部门对参加某次专业技术考试的100人的成绩进行了统计,绘制的频率分布直方图如图所示.规定80分以上者晋级成功,否则晋级失败(满分为100分).
(1)求图中的值;
(2)估计该次考试的平均分 (同一组中的数据用该组的区间中点值代表);
(3)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关.
晋级成功 | 晋级失败 | 合计 | |
男 | 16 | ||
女 | 50 | ||
合计 |
参考公式:,其中
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |