题目内容

【题目】在科普知识竞赛前的培训活动中,将甲、乙两名学生的6次培训成绩(百分制)制成如图所示的茎叶图:

(1)若从甲、乙两名学生中选择1人参加该知识竞赛,你会选哪位?请运用统计学的知识说明理由;
(2)若从学生甲的6次培训成绩中随机选择2个,记选到的分数超过87分的个数为ξ,求ξ的分布列和数学期望.

【答案】
(1)解:学生甲的平均成绩 = =82,

学生乙的平均成绩 = =82,

又S2= [(68﹣82)2+(76﹣82)2+(79﹣82)2+(86﹣82)2+(88﹣82)2+(95﹣82)2]=77,

S2= [(71﹣82)2+(75﹣82)2+(82﹣82)2+(84﹣82)2+(86﹣82)2+(94﹣82)2]=

= ,S2>S2

说明甲、乙的平均水平一样,但乙的方差小,则乙发挥更稳定,故应选择学生乙参加知识竞赛.(6分)


(2)解:ξ的所有可能取值为0,1,2,

则P(ξ=0)= = ,P(ξ=1)= = ,P(ξ=2)= =

ξ的分布列为

ξ

0

1

2

P

所以数学期望Eξ= =


【解析】(1)分别求出从甲、乙两名学生中的平均成绩和方差,得到甲、乙的平均水平一样,但乙的方差小,则乙发挥更稳定,故应选择学生乙参加知识竞赛.(2)ξ的所有可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和数学期望.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网