题目内容
【题目】△ABC中,角A,B,C的对边分别为a,b,c,且2bcosC+c=2a.
(Ⅰ)求角B的大小;
(Ⅱ)若,求的值.
【答案】(1)(2)
【解析】试题分析:(1)由于2bcosC+c=2a,是关于边的一次齐次式,所以用正弦定理把边化为角,可得到,。(2)由(1)中和,可知A,B角己知,同时根据三角形内角为,也可以sinC,所以,可解。
试题解析:(Ⅰ)在△ABC中,∵2bcosC+c=2a,
由正弦定理,得2sinBcosC+sinC=2sinA,
∵A+B+C=π,
∴sinA=sin(B+C)=sinBcosC+cosBsinC,…
∴2sinBcosC+sinC=2(sinBcosC+cosBsinC),
∴sinC=2cosBsinC,
∵0<C<π,∴sinC≠0,
∴,
∵0<B<π,∴.
(Ⅱ)∵三角形ABC中,,
∴,
∴,
∴
练习册系列答案
相关题目
【题目】是指大气中直径小于或等于微米的颗粒物,也称为可入肺颗粒物,对人体健康和大气环境质量的影响很大.我国标准采用世卫组织设定的最宽限值.即日均值在35微克/立方米以下空气质量为一级;在35微克/立方米75微克/立方米之间空气质量为二级;75微克/立方米以上空气质量为超标.
某市环保局从360天的市区监测数据中统计了1月至10月的每月的平均值(单位:微克/立方米),如下表所示.
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
月均值 | 32 | 28 | 25 | 31 | 34 | 33 | 45 | 44 | 63 | 68 |
(1)从5月到10月的这6个数据中任取2个数值,求这个2个数值均为二级的概率;
(2)求月均值关于月份的回归直线方程,其中.