题目内容
【题目】已知函数f(x)=sin2x﹣cos2x﹣2 sinx cosx(x∈R).
(Ⅰ)求f( )的值.
(Ⅱ)求f(x)的最小正周期及单调递增区间.
【答案】解:∵函数f(x)=sin2x﹣cos2x﹣2 sinx cosx=﹣ sin2x﹣cos2x=2sin(2x+ )
(Ⅰ)f( )=2sin(2× + )=2sin =2,
(Ⅱ)∵ω=2,故T=π,
即f(x)的最小正周期为π,
由2x+ ∈[﹣ +2kπ, +2kπ],k∈Z得:
x∈[﹣ +kπ,﹣ +kπ],k∈Z,
故f(x)的单调递增区间为[﹣ +kπ,﹣ +kπ],k∈Z.
【解析】利用二倍角公式及辅助角公式化简函数的解析式,
(Ⅰ)代入可得:f( )的值.
(Ⅱ)根据正弦型函数的图象和性质,可得f(x)的最小正周期及单调递增区间
【考点精析】通过灵活运用复合函数单调性的判断方法和正弦函数的单调性,掌握复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”;正弦函数的单调性:在上是增函数;在上是减函数即可以解答此题.
练习册系列答案
相关题目