题目内容
【题目】在△ABC中,∠A=60°,c= a.(13分)
(1)求sinC的值;
(2)若a=7,求△ABC的面积.
【答案】
(1)
解:∠A=60°,c= a,
由正弦定理可得sinC= sinA= × = ,
(2)
解:a=7,则c=3,
∴C<A,
由(1)可得cosC= ,
∴sinB=sin(A+C)=sinAcosC+cosAsinC= × + × = ,
∴S△ABC= acsinB= ×7×3× =6 .
【解析】(1.)根据正弦定理即可求出答案,
(2.)根据同角的三角函数的关系求出cosC,再根据两角和正弦公式求出sinB,根据面积公式计算即可.
【考点精析】根据题目的已知条件,利用两角和与差的正弦公式和正弦定理的定义的相关知识可以得到问题的答案,需要掌握两角和与差的正弦公式:;正弦定理:.
练习册系列答案
相关题目