题目内容
【题目】已知,函数.
(1)求证:曲线在点处的切线过定点;
(2)若是在区间上的极大值,但不是最大值,求实数的取值范围;
(3)求证:对任意给定的正数 ,总存在,使得在上为单调函数.
【答案】(1)证明见解析;(2);(3)证明见解析.
【解析】
试题分析:(1)求出切点坐标及切线方程,切线恒过定点即与参数无关,令系数为,可得定点坐标;(2),要使成为极大值,因此,又不是最大值,而在单增,单减,单增,因此,可求得的范围;(3)在单增,单减,单增,又,所以要使在单调,只需,即,故存在.
试题解析:解:(1)证明:∵,∴
∵,∴曲线在点处的切线方程为,
即,令,则,
故曲线在点处的切线过定点
(2)解:,
令得或
∵是在区间上的极大值,∴,∴
令,得或递增;令,得递减,
∵不是在区间上的最大值,
∴在区间上的最大值为,
∴,∴,又,∴
(3)证明:,
∵,∴
令,得或递增;令,得递减,
∵,∴
若在上为单调函数,则,即
故对任意给定的正数,总存在(其中),使得在上为单调函数
练习册系列答案
相关题目
【题目】某种产品的年销售量与该年广告费用支出有关,现收集了4组观测数据列于下表:
(万元) | 1 | 4 | 5 | 6 |
(万元) | 30 | 40 | 60 | 50 |
现确定以广告费用支出为解释变量,销售量为预报变量对这两个变量进行统计分析.
(1)已知这两个变量满足线性相关关系,试建立与之间的回归方程;
(2)假如2017年广告费用支出为10万元,请根据你得到的模型,预测该年的销售量.
(线性回归方程系数公式).