题目内容

【题目】设集合A={x|1≤x≤4},B={x|m≤x≤m+1}.
(1)当m=3时,求A∩B与A∩RB;
(2)若A∩B=B,求实数m的取值范围.

【答案】
(1)解:m=3时,B={x|3≤x≤4}.A∩B=[3,4].

RB=(﹣∞,3)∪(4,+∞);

A∩RB=[1,3)


(2)解:∵A∩B=B,∴BA.

,解得1≤m≤3.

∴实数m的取值范围是[1,3]


【解析】(1)m=3时,B={x|3≤x≤4}.利用交集的运算性质即可得出A∩B.利用补集的运算性质可得RB=(﹣∞,3)∪(4,+∞),即可得出A∩RB.(2)A∩B=B,考点BA.考点 ,解得m范围.
【考点精析】本题主要考查了交、并、补集的混合运算的相关知识点,需要掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网