题目内容

7.对于自然数N*的每一个非空子集,我们定义“交替和”如下:把子集中的元素从大到小的顺序排列,然后从最大的数开始交替地加减各数,例如{1,2,4,6,9}的交替和是9-6+4-2+1=6;则集合{1,2,3,4,5,6,7}的所有非空子集的交替和的总和为448.

分析 根据“交替和”的定义:求出S2、S3、S4,并根据其结果猜测集合N={1,2,3,…,n}的每一个非空子集的“交替和”的总和Sn即可.

解答 解:由题意,S2表示集合N={1,2}的所有非空子集的“交替和”的总和,
又{1,2}的非空子集有{1},{2},{2,1},∴S2=1+2+2-1=4;
S3=1+2+3+(2-1)+(3-1)+(3-2)+(3-2+1)=12,
S4=1+2+3+4+(2-1)+(3-1)+(4-1)+(3-2)+(4-2)+(4-3)+(3-2+1)+(4-2+1)+(4-3+1)+(4-3+2)+(4-3+2-1)=32,
∴根据前4项猜测集合N={1,2,3,…,n}的每一个非空子集的“交替和”的总和Sn=n•2n-1
所以S7=7×27-1=7×26=448,
故答案为:448.

点评 本题主要考查了数列的应用,同时考查了归纳推理的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网