题目内容
17.设实数x,y满足约束条件$\left\{\begin{array}{l}{2x-y+1≥0}\\{x+3y-3≥0}\\{x+y-2≤0}\end{array}\right.$,则z=$\frac{y}{x+1}$的取值范围是( )A. | [$\frac{1}{5}$,1] | B. | [$\frac{1}{5}$,$\frac{5}{4}$] | C. | [$\frac{1}{6}$,$\frac{3}{2}$] | D. | [$\frac{1}{6}$,$\frac{5}{4}$] |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.
解答 解:作出不等式组对应的平面区域如图:
z=$\frac{y}{x+1}$的几何意义为区域内的点到定点D(-1,0)的斜率,
由图象知AD的斜率最大,BD的斜率最小,
由$\left\{\begin{array}{l}{2x-y+1=0}\\{x+y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=\frac{5}{3}}\end{array}\right.$,即A($\frac{1}{3}$,$\frac{5}{3}$),此时z=$\frac{\frac{5}{3}}{\frac{1}{3}+1}$=$\frac{5}{4}$,
由$\left\{\begin{array}{l}{x+3y-3=0}\\{x+y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{y=\frac{1}{2}}\end{array}\right.$,即B($\frac{3}{2},\frac{1}{2}$),此时z=$\frac{\frac{1}{2}}{\frac{3}{2}+1}$=$\frac{1}{5}$,
故z=$\frac{y}{x+1}$的取值范围是[$\frac{1}{5}$,$\frac{5}{4}$],
故选:B.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义以及直线斜率公式是解决本题的关键.
练习册系列答案
相关题目
8.在函数f(x)=alnx-(x-1)2的图象上,横坐标在区间(1,2)内变化的点处的切线斜率均大于1,则实数a的取值范围是( )
A. | [1,+∞) | B. | (1,+∞) | C. | [6,+∞) | D. | (6,+∞) |
2.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如下表:
(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?
(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
支持 | 不支持 | 合计 | |
中型企业 | 80 | 40 | 120 |
小型企业 | 240 | 200 | 440 |
合计 | 320 | 240 | 560 |
(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k0) | 0.050 | 0.025 | 0.010 |
k0 | 3.841 | 5.024 | 6.635 |
9.执行如图的程序框图,当k的值为2015时,则输出的S值为( )
A. | $\frac{2013}{2014}$ | B. | $\frac{2014}{2015}$ | C. | $\frac{2015}{2016}$ | D. | $\frac{2016}{2017}$ |