题目内容
20.设△ABC是锐角三角形,三个内角A,B,C所对的边分别记为a,b,c,并且(sinA-sinB)(sinA+sinB)=sin($\frac{π}{3}$-B)sin($\frac{π}{3}$+B).(Ⅰ)求角A的值;
(Ⅱ)若$\overrightarrow{AB}$•$\overrightarrow{AC}$=12,a=2$\sqrt{7}$,求b,c(其中b<c).
分析 (Ⅰ)利用已知条件化简表达式,求出A的正弦函数值,然后求角A的值;
(Ⅱ)利用$\overrightarrow{AB}$•$\overrightarrow{AC}$=12,求出bc的值,利用余弦定理得到关系式,然后求b,c(其中b<c).
解答 解:(Ⅰ)(sinA-sinB)(sinA+sinB)=sin($\frac{π}{3}$-B)sin($\frac{π}{3}$+B).
可得:${sin^2}A=(\frac{{\sqrt{3}}}{2}cosB+\frac{1}{2}sinB)•(\frac{{\sqrt{3}}}{2}cosB-\frac{1}{2}sinB)+{sin^2}B$
=$\frac{3}{4}({cos^2}B+{sin^2}B)=\frac{3}{4}$,
∴$sinA=\frac{{\sqrt{3}}}{2}$,∴$A=\frac{π}{3}$. …(6分)
(Ⅱ) $\overrightarrow{AB}•\overrightarrow{AC}=bccosA=12$,∴bc=24,
又a2=b2+c2-2bccosA=(b+c)2-3bc,
∴b+c=10,
∵b<c,∴b=4,c=6.…(12分)
点评 本题考查余弦定理的应用,实数的化简求值,基本知识的考查.
练习册系列答案
相关题目
15.圆x2+y2+2x-4y+1=0关于直线2ax-by+2=0(a,b∈R)对称,则ab的取值范围是( )
A. | $({-\frac{1}{4},0})$ | B. | $({-∞,\frac{1}{4}})$ | C. | $({-∞,\frac{1}{4}}]$ | D. | (0,$\frac{1}{4}$] |
12.已知函数f(x)=x${\;}^{\frac{2}{3}}$+ex-1(x<0)与g(x)=x${\;}^{\frac{2}{3}}$+ln(x+a)的图象上存在关于y轴对称的点,则a的取值范围是( )
A. | (-1,1) | B. | (-∞,$\frac{1}{\sqrt{e}}$) | C. | (-∞,1) | D. | (-∞,$\sqrt{e}$) |
9.已知ω>0,函数$f(x)=sin(ωx+\frac{π}{4})$在$(\frac{π}{2},π)$单调递减,则ω的最大值是( )
A. | $\frac{1}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{5}{4}$ | D. | 2 |