题目内容
【题目】下列四个结论: ①函数 的值域是(0,+∞);
②直线2x+ay﹣1=0与直线(a﹣1)x﹣ay﹣1=0平行,则a=﹣1;
③过点A(1,2)且在坐标轴上的截距相等的直线的方程为x+y=3;
④若圆柱的底面直径与高都等于球的直径,则圆柱的侧面积等于球的表面积.
其中正确的结论序号为 .
【答案】④
【解析】解:对于①,∵ ,∴函数 的值域是(0,1)∪(1,+∞),故错; 对于②,直线2x+ay﹣1=0与直线(a﹣1)x﹣ay﹣1=0平行,则a=﹣1或0,故错;
对于③,过点A(1,2)且在坐标轴上的截距相等的直线的方程为x+y=3或y=2x,故错;
对于④,若圆柱的底面直径与高都等于球的直径2r,则圆柱的侧面积等于2πr2r=4πr2等于球的表面积,故正确.
故答案为:④
①, ,∴函数 ≠1;
②,a=0时,直线2x+ay﹣1=0与直线(a﹣1)x﹣ay﹣1=0也平行;
③,过点A(1,2)且在坐标轴上的截距相等的直线还有过原点的直线;
④,利用公式求出圆柱的侧面积即可.
练习册系列答案
相关题目