题目内容
【题目】已知抛物线:(),圆:(),抛物线上的点到其准线的距离的最小值为.
(1)求抛物线的方程及其准线方程;
(2)如图,点是抛物线在第一象限内一点,过点P作圆的两条切线分别交抛物线于点A,B(A,B异于点P),问是否存在圆使AB恰为其切线?若存在,求出r的值;若不存在,说明理由.
【答案】(1)的方程为,准线方程为.(2)存在,
【解析】
(1)由得到p即可;
(2)设,利用点斜式得到PA的的方程为,由到PA的距离为半径可得,同理,同理写出直线AB的方程,利用点到直线AB的距离为半径建立方程即可.
解:(1)由题意得,解得,
所以抛物线的方程为,准线方程为.
(2)由(1)知,.
假设存在圆使得AB恰为其切线,设,,
则直线PA的的方程为,即.
由点到PA的距离为r,得,
化简,得,
同理,得.
所以,是方程的两个不等实根,故,.
易得直线AB的方程为,
由点到直线AB的距离为r,得,
所以,
于是,,
化简,得,即.
经分析知,,因此.
【题目】某省确定从2021年开始,高考采用“”的模式,取消文理分科,即“3”包括语文、数学、外语,为必考科目;“1”表示从物理、历史中任选一门;“2”则是从生物、化学、地理、政治中选择两门,共计六门考试科目.某高中从高一年级2000名学生(其中女生900人)中,采用分层抽样的方法抽取名学生进行调查.
(1)已知抽取的名学生中含男生110人,求的值及抽取到的女生人数;
(2)学校计划在高二上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调杳(假定每名学生在这两个科目中必须洗择一个科目且只能选择一个科目).下表是根据调查结果得到的列联表,请将列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;
性别 | 选择物理 | 选择历史 | 总计 |
男生 | 50 | ||
女生 | 30 | ||
总计 |
(3)在(2)的条件下,从抽取的选择“物理”的学生中按分层抽样抽取6人,再从这6名学生中抽取2人,对“物理”的选课意向作深入了解,求2人中至少有1名女生的概率.
附:,其中.
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |