题目内容
【题目】已知抛物线的焦点为,过点的直线交抛物线于和两点.
(1)当时,求直线的方程;
(2)若过点且垂直于直线的直线与抛物线交于两点,记与的面积分别为,求的最小值.
【答案】(1);(2)12.
【解析】
(1) 设直线方程为,联立直线与抛物线的方程,利用韦达定理求解得即可.
(2) 联立直线与抛物线的方程,利用韦达定理表达,再根据基本不等式的方法求最小值即可.
解: (1)由直线过定点,可设直线方程为.
联立消去,得,
由韦达定理得,
所以.
因为.所以,解得.
所以直线的方程为.
(2)由(1),知的面积为
.
因为直线与直线垂直,
且当时,直线的方程为,则此时直线的方程为,
但此时直线与抛物线没有两个交点,
所以不符合题意,所以.因此,直线的方程为.
同理,的面积.
所以
,
当且仅当,即,亦即时等号成立.
【题目】下表是某公司2018年5~12月份研发费用(百万元)和产品销量(万台)的具体数据:
月 份 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
研发费用(百万元) | 2 | 3 | 6 | 10 | 21 | 13 | 15 | 18 |
产品销量(万台) | 1 | 1 | 2 | 2.5 | 6 | 3.5 | 3.5 | 4.5 |
(Ⅰ)根据数据可知与之间存在线性相关关系,求出与的线性回归方程(系数精确到0.01);
(Ⅱ)该公司制定了如下奖励制度:以(单位:万台)表示日销售,当
参考数据:,,,,
参考公式:相关系数,其回归直线中的,若随机变量服从正态分布,则,.
【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸.呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院人进行了问卷调查得到了如下的列联表:
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | |||
女 | |||
合计 |
已知在全部人中随机抽取人,抽到患心肺疾病的人的概率为.
(1)请将上面的列联表补充完整,并判断是否有的把握认为患心肺疾病与性别有关?请说明你的理由;
(2)已知在不患心肺疾病的位男性中,有位从事的是户外作业的工作.为了指导市民尽可能地减少因雾霾天气对身体的伤害,现从不患心肺疾病的位男性中,选出人进行问卷调查,求所选的人中至少有一位从事的是户外作业的概率.
下面的临界值表供参考: