题目内容
【题目】已知函数.
(1)设函数,求函数的极值;
(2)若在上存在一点,使得成立,求的取值范围.
【答案】(1)当时,极大值为,无极小值;当时,无极值;(2)或.
【解析】
(1)求出,对分类讨论求出单调区间,即可求出结论;
(2)在上存在一点,使得成立,即为,只需,结合(1)中的结论对分类讨论求出,即可求解.
(1)依题意,定义域为,
∴,
①当,即时,
令,∵,∴,
此时,在区间上单调递增,
令,得.
此时,在区间上单调递减.
②当,即时,恒成立,
在区间上单调递减.
综上,当时,
在处取得极大值,无极小值;
当时,在区间上无极值.
(2)依题意知,在上存在一点,使得成立,
即在上存在一点,使得,
故函数在上,有.
由(1)可知,①当,
即时,在上单调递增,
∴,∴,
∵,∴.
②当,或,
即时,在上单调递减,
∴,∴.
③当,即时,
由(2)可知,在处取得极大值也是区间上的最大值,
即,
∵,∴在上恒成立,
此时不存在使成立.
综上可得,所求的取值范围是或.
练习册系列答案
相关题目