题目内容
设数列{an}的前n项和为Sn,且(3-m)Sn+2man="m+3" (n∈N*),其中m为常数,且m≠-3,m≠0.
(1)求证:{an}是等比数列;
(2)若数列{an}的公比q=f(m),数列{bn}满足b1=a1,bn=f(bn-1) (n∈N,n≥2),求证:为等差数列,并求bn.
(1)求证:{an}是等比数列;
(2)若数列{an}的公比q=f(m),数列{bn}满足b1=a1,bn=f(bn-1) (n∈N,n≥2),求证:为等差数列,并求bn.
(1)证明见解析(2)证明见解析
证明 (1)由(3-m)Sn+2man=m+3,
得(3-m)Sn+1+2man+1=m+3,
两式相减,得(3+m)an+1=2man,m≠-3,
∴=≠0 (n≥1).∴{an}是等比数列.
(2)由(3-m)S1+2ma1=m+3,解出a1=1,∴b1=1.
q="f(m)=" ,n∈N且n≥2时,
bn=f(bn-1)= ·,
bnbn-1+3bn=3bn-1,推出-=.
∴是以1为首项、为公差的等差数列.
∴=1+=.∴bn=.
得(3-m)Sn+1+2man+1=m+3,
两式相减,得(3+m)an+1=2man,m≠-3,
∴=≠0 (n≥1).∴{an}是等比数列.
(2)由(3-m)S1+2ma1=m+3,解出a1=1,∴b1=1.
q="f(m)=" ,n∈N且n≥2时,
bn=f(bn-1)= ·,
bnbn-1+3bn=3bn-1,推出-=.
∴是以1为首项、为公差的等差数列.
∴=1+=.∴bn=.
练习册系列答案
相关题目