题目内容
设数列{an}的前n项和为Sn,且(3-m)Sn+2man="m+3" (n∈N*),其中m为常数,且m≠-3,m≠0.
(1)求证:{an}是等比数列;
(2)若数列{an}的公比q=f(m),数列{bn}满足b1=a1,bn=
f(bn-1) (n∈N,n≥2),求证:
为等差数列,并求bn.
(1)求证:{an}是等比数列;
(2)若数列{an}的公比q=f(m),数列{bn}满足b1=a1,bn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130034690204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130034706403.gif)
(1)证明见解析(2)证明见解析
证明 (1)由(3-m)Sn+2man=m+3,
得(3-m)Sn+1+2man+1=m+3,
两式相减,得(3+m)an+1=2man,m≠-3,
∴
=
≠0 (n≥1).∴{an}是等比数列.
(2)由(3-m)S1+2ma1=m+3,解出a1=1,∴b1=1.
q="f(m)="
,n∈N且n≥2时,
bn=
f(bn-1)=
·
,
bnbn-1+3bn=3bn-1,推出
-
=
.
∴
是以1为首项、
为公差的等差数列.
∴
=1+
=
.∴bn=
.
得(3-m)Sn+1+2man+1=m+3,
两式相减,得(3+m)an+1=2man,m≠-3,
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130034722372.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130034753412.gif)
(2)由(3-m)S1+2ma1=m+3,解出a1=1,∴b1=1.
q="f(m)="
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130034753412.gif)
bn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130034690204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130034690204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130034815444.gif)
bnbn-1+3bn=3bn-1,推出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130034831227.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130034846353.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130034862204.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130034706403.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130034862204.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130034831227.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130034940243.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130034956357.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130034971360.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目