题目内容
设函数,(1)若函数在处与直线相切;(1) ①求实数的值; ②求函数上的最大值;(2)当时,若不等式对所有的都成立,求实数的取值范围.
(1)① ②(2)
解析
已知实数a满足1<a≤2,设函数f (x)=x3-x2+ax.(Ⅰ) 当a=2时,求f (x)的极小值;(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x (b∈R) 的极小值点与f (x)的极小值点相同,求证:g(x)的极大值小于等于10.
(本题满分15分)已知函数()(Ⅰ)讨论的单调性;(Ⅱ)当时,设,若存在,,使, 求实数的取值范围。为自然对数的底数,
已知函数.(1)讨论函数在定义域内的极值点的个数;(2)若函数在处取得极值,对,恒成立,求实数的取值范围.
已知函数在与时都取得极值.(1)求的值及函数的单调区间; (2)若对,不等式恒成立,求的取值范围.
设函数.(1)若的两个极值点为,且,求实数的值;(2)是否存在实数,使得是上的单调函数?若存在,求出的值;若不存在,说明理由.
已知函数,(1) 设(其中是的导函数),求的最大值;(2) 证明: 当时,求证: ; (3) 设,当时,不等式恒成立,求的最大值
(本题满分14分) 设函数f (x)=ln x+在(0,) 内有极值.(Ⅰ) 求实数a的取值范围;(Ⅱ) 若x1∈(0,1),x2∈(1,+).求证:f (x2)-f (x1)>e+2-.注:e是自然对数的底数.
(本小题满分12分)已知函数f(x)=,其中a , b , c是以d为公差的等差数列,且a>0,d>0.设[1-]上,,在,将点A, B, C,(Ⅰ)求(II)若⊿ABC有一边平行于x轴,且面积为,求a ,d的值.