题目内容

【题目】(题文)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为

A. B. C. D.

【答案】A

【解析】分析:首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.

详解:根据相互平行的直线与平面所成的角是相等的,

所以在正方体

平面与线所成的角是相等的,

所以平面与正方体的每条棱所在的直线所成角都是相等的,

同理平面也满足与正方体的每条棱所在的直线所成角都是相等

要求截面面积最大,则截面的位置为夹在两个面中间的,

且过棱的中点的正六边形,且边长为

所以其面积为故选A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网